Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 592: 145-157, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668119

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is central to the regulation of the DNA damage response and repair through nonhomologous end joining. The structure has proved challenging due to its large size and multiple HEAT repeats. We have recently reported crystals of selenomethionine-labeled DNA-PKcs complexed with native KU80ct194 (KU80 residues 539-732) diffracting to 4.3Å resolution. The novel use of crystals of selenomethionine-labeled protein expressed in HeLa cells has facilitated the use of single anomalous X-ray scattering of this 4128 amino acid, multiple HEAT-repeat structure. The monitoring of the selenomethionines in the anomalous-difference density map has allowed the checking of the amino acid residue registration in the electron density, and the labeling of the Ku-C-terminal moiety with selenomethionine has further allowed its identification in the structure of the complex with DNA-PKcs. The crystal structure defines a stage on which many of the components assemble and regulate the kinase activity through modulating the conformation and allosteric regulation of kinase activity.


Assuntos
Proteína Quinase Ativada por DNA/química , Proteínas Nucleares/química , Regulação Alostérica , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Sequências Repetitivas de Aminoácidos , Selenometionina/análise , Alinhamento de Sequência
2.
Science ; 355(6324): 520-524, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154079

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a central component of nonhomologous end joining (NHEJ), repairing DNA double-strand breaks that would otherwise lead to apoptosis or cancer. We have solved its structure in complex with the C-terminal peptide of Ku80 at 4.3 angstrom resolution using x-ray crystallography. We show that the 4128-amino acid structure comprises three large structural units: the N-terminal unit, the Circular Cradle, and the Head. Conformational differences between the two molecules in the asymmetric unit are correlated with changes in accessibility of the kinase active site, which are consistent with an allosteric mechanism to bring about kinase activation. The location of KU80ct194 in the vicinity of the breast cancer 1 (BRCA1) binding site suggests competition with BRCA1, leading to pathway selection between NHEJ and homologous recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína BRCA1/química , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/ultraestrutura , Células HeLa , Humanos , Autoantígeno Ku/química , Peptídeos/química , Ligação Proteica , Conformação Proteica
3.
Nature ; 463(7277): 118-21, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20023628

RESUMO

Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.


Assuntos
Proteína Quinase Ativada por DNA/química , Sequências Hélice-Volta-Hélice , Proteínas Nucleares/química , Antígenos Nucleares/química , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Autoantígeno Ku , Modelos Moleculares , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
4.
EMBO J ; 27(1): 290-300, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18046455

RESUMO

The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4-DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1-233) homodimer at 2.3 A resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex.


Assuntos
Enzimas Reparadoras do DNA/química , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Cristalografia por Raios X , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Dimerização , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Propriedades de Superfície , Proteínas de Xenopus/química , Proteínas de Peixe-Zebra/química
5.
Philos Trans R Soc Lond B Biol Sci ; 361(1467): 413-23, 2006 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-16524830

RESUMO

Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding.


Assuntos
Biologia Computacional , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Conformação Proteica , Especificidade por Substrato
6.
DNA Repair (Amst) ; 5(3): 362-8, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16388993

RESUMO

DNA ligase IV catalyses the final ligation step in the non-homologous end-joining (NHEJ) DNA repair pathway and requires interaction of the ligase with the Xrcc4 'genome-guardian', an essential NHEJ factor. Here we report the 3.9 A crystal structure of the Saccharomyces cerevisiae Xrcc4 ortholog ligase interacting factor 1 (Lif1p) complexed with the C-terminal BRCT domains of DNA ligase IV (Lig4p). The structure reveals a novel mode of protein recognition by a tandem BRCT repeat, and in addition provides a molecular basis for a human LIG4 syndrome clinical condition.


Assuntos
DNA Ligases/química , Proteínas de Ligação a DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Proteína BRCA1/química , Cristalização , Cristalografia por Raios X , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/genética , Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA