Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8346, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102124

RESUMO

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co1/3TaS2 as the first example of tetrahedral triple-Q magnetic ordering with the associated topological Hall effect (non-zero σxy(H = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-Q state.

2.
Nat Phys ; 16(5): 546-552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32802143

RESUMO

Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles1. Theories define such states using gauge fields and deconfined quasiparticle excitations that emerge from a local constraint governing the ground state of a frustrated magnet. For example, the '2-in-2-out' ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice2-4 in rare-earth pyrochlores. However, f-electron ions often carry multipole degrees of freedom of higher rank than dipoles, leading to intriguing behaviours and 'hidden' orders5-6. Here we show that the correlated ground state of a Ce3+-based pyrochlore, Ce2Sn2O7, is a quantum liquid of magnetic octupoles. Our neutron scattering results are consistent with a fluid-like state where degrees of freedom have a more complex magnetization density than that of magnetic dipoles. The nature and strength of the octupole-octupole couplings, together with the existence of a continuum of excitations attributed to spinons, provides further evidence for a quantum ice of octupoles governed by a '2-plus-2-minus' rule7-8. Our work identifies Ce2Sn2O7 as a unique example of frustrated multipoles forming a 'hidden' topological order, thus generalizing observations on quantum spin liquids to multipolar phases that can support novel types of emergent fields and excitations.

3.
Inorg Chem ; 57(14): 8236-8240, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29952562

RESUMO

Coordination networks (CNs), such as, for instance, metal-organic frameworks (MOFs), can turn into remarkable magnets, with various topologies of spin carriers and unique opportunities of cross-coupling to other functionalities. Alternatively, distinct inorganic subnetworks that are spatially segregated by organic ligands can lead to coexisting magnetic systems in a single bulk material. Here, we present a system of two CNs of general formula Mn(H2O) x(OOC-(C6H4) y-COO). The compound with two water molecules and one aromatic ring ( x = 2; y = 1) has a single two-dimensional magnetic subnet, while the material with x = 1.5 and y = 2 shows, additionally, another type of magnetic layer. In analogy to magnetic multilayers that are deposited by physical methods, these materials can be regarded as metal-organic magnetic multilayers (MOMMs), where the stacking of different types of magnetic layers is controlled by the choice of an organic ligand during the chemical synthesis. This work further paves the way toward organic-inorganic nanostructures with functional magnetic properties.

4.
Chemistry ; 24(7): 1586-1605, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29115702

RESUMO

Solvothermal reaction in N,N-dimethylformamide (DMF) between 1,6-bis(1-imidazolyl)-2,4-hexadiyne monohydrate (L1⋅H2 O), isophthalic acid (H2 L2), and Zn(NO3 )2 ⋅6 H2 O gives the diacetylene-based mixed-ligand coordination polymer {[Zn(L1)(L2)](DMF)2 }n (UMON-44) in 38 % yield. Combination of DSC with variable-temperature single-crystal X-ray diffraction revealed the occurrence of two phase transitions spanning the ranges 129-144 K and 158-188 K. Furthermore, the three structurally similar phases of UMON-44 show giant negative and/or colossal positive thermal expansions. These unusual phenomena exist without any change in the contents of the unit cell. DFT calculations using the PBE+D3 dispersion scheme were able to distinguish between these polymorphs by accurately reproducing their salient structural features, although corrections in the size of the unit cell turned out to be necessary for the high-temperature phase to account for its large thermal expansion. In addition, the infrared spectra (vibration frequencies and peak intensities) of these theoretical models were calculated, allowing for univocal identification of the corresponding polymorphs. Last, the limits of our computational method were tested by calculating the phase transition temperatures and their associated enthalpies, and the derived figures compare favorably with the values determined experimentally.

5.
Nat Commun ; 8(1): 892, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026077

RESUMO

The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb2Hf2O7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.Experimental studies of frustrated spin systems such as pyrochlore magnetic oxides test our understanding of quantum many-body physics. Here the authors show experimentally that Tb2Hf2O7 may be a model material for investigating how structural disorder can stabilize a quantum spin liquid phase.

6.
J Phys Condens Matter ; 29(7): 075902, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28032613

RESUMO

Large single crystals of pyrochlore [Formula: see text] were successfully grown by the floating zone technique using an optical furnace equipped with high power xenon arc lamps. Structural investigations were carried out via powder synchrotron x-ray and neutron diffraction to establish the crystallographic structure of the materials produced. The magnetic properties of the single crystals were determined for magnetic fields applied along different crystallographic axes. The results revealed that [Formula: see text] is an interesting material for further investigation as a frustrated magnet. The high quality of the crystals produced makes them ideal for detailed investigation, especially using neutron scattering techniques.

7.
Beilstein J Nanotechnol ; 6: 1743-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425426

RESUMO

Bifunctional magnetic and fluorescent core/shell/shell Mn:ZnS/ZnS/Fe3O4 nanocrystals were synthesized in a basic aqueous solution using 3-mercaptopropionic acid (MPA) as a capping ligand. The structural and optical properties of the heterostructures were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The PL spectra of Mn:ZnS/ZnS/Fe3O4 quantum dots (QDs) showed marked visible emission around 584 nm related to the (4)T1 → (6)A1 Mn(2+) transition. The PL quantum yield (QY) and the remnant magnetization can be regulated by varying the thickness of the magnetic shell. The results showed that an increase in the thickness of the Fe3O4 magnetite layer around the Mn:ZnS/ZnS core reduced the PL QY but improved the magnetic properties of the composites. Nevertheless, a good compromise was achieved in order to maintain the dual modality of the nanocrystals, which may be promising candidates for various biological applications.

8.
Phys Rev Lett ; 115(9): 097202, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371677

RESUMO

We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 µ_{B}. The magnetic moments are confined to the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical ⟨111⟩-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

9.
Inorg Chem ; 54(15): 7600-6, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26201004

RESUMO

Determination of the electronic energy spectrum of a trigonal-symmetry mononuclear Yb(3+) single-molecule magnet (SMM) by high-resolution absorption and luminescence spectroscopies reveals that the first excited electronic doublet is placed nearly 500 cm(-1) above the ground one. Fitting of the paramagnetic relaxation times of this SMM to a thermally activated (Orbach) model {τ = τ0 × exp[ΔOrbach/(kBT)]} affords an activation barrier, ΔOrbach, of only 38 cm(-1). This result is incompatible with the spectroscopic observations. Thus, we unambiguously demonstrate, solely on the basis of experimental data, that Orbach relaxation cannot a priori be considered as the main mechanism determining the spin dynamics of SMMs. This study highlights the fact that the general synthetic approach of optimizing SMM behavior by maximization of the anisotropy barrier, intimately linked to the ligand field, as the sole parameter to be tuned, is insufficient because of the complete neglect of the interaction of the magnetic moment of the molecule with its environment. The Orbach mechanism is expected dominant only in the cases in which the energy of the excited ligand field state is below the Debye temperature, which is typically low for molecular crystals and, thus, prevents the use of the anisotropy barrier as a design criterion for the realization of high-temperature SMMs. Therefore, consideration of additional design criteria that address the presence of alternative relaxation processes beyond the traditional double-well picture is required.

10.
Inorg Chem ; 53(2): 872-81, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24400955

RESUMO

Dehydration of the hybrid compound [Ni3(OH)2(tp)2(H2O)4] (1) upon heating led to the sequential removal of coordinated water molecules to give [Ni3(OH)2(tp)2(H2O)2] (2) at T1 = 433 K and thereafter anhydrous [Ni2(OH)2(tp)] (3) at T2 = 483 K. These two successive structural transformations were thoroughly characterized by powder X-ray diffraction assisted by density functional theory calculations. The crystal structures of the two new compounds 2 and 3 were determined. It was shown that at T1 (433 K) the infinite nickel oxide chains built of the repeating structural unit [Ni3(µ3-OH)2](4+) in 1 collapse and lead to infinite porous layers, forming compound 2. The second transformation at T2 (483 K) gave the expected anhydrous compound 3, which is isostructural with Co2(OH)2(tp). These irreversible transitions directly affect the magnetic behavior of each phase. Hence, 1 was found to be antiferromagnetic at TN = 4.11 K, with metamagnetic behavior with a threshold field Hc of ca. 0.6 T. Compound 2 exhibits canted antiferromagnetism below TN = 3.19 K, and 3 is ferromagnetic below TC = 4.5 K.

11.
Inorg Chem ; 52(2): 608-16, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23273135

RESUMO

A new hydroxythiophenedicarboxylate metal-organic framework based on Mn(II) cations has been obtained by an aqueous two-step procedure including hydrothermal treatment. The structure of Mn(3)(OH)(2)(C(6)H(2)O(4)S)(2) has been determined ab initio from synchrotron X-ray powder diffraction data and consists of infinite inorganic ribbons which are interlinked by 2,5-thiophenedicarboxylate (tdc) molecules (monoclinic, space group P2(1)/c, a = 3.4473(1) Å, b = 19.1287(1) Å, c = 11.0069(1) Å, ß = 97.48(1)°, V = 719.65(1) Å(3), and Z = 2). Each ribbon is built of three vertex-sharing chains of edge-sharing MnO(6) octahedrons. These ribbons are bridged together by the carboxylate functions of the tdc molecule to form a pseudo-2D inorganic subnetwork, while this molecule develops in the third dimension to pillar these pseudo-2D layers. An unprecedented hexadentate symmetric bridging mode is adopted by tdc which bridges two chains of a ribbon on one side and two ribbons of a pseudo-2D inorganic subnetwork on the other side. Magnetic measurements suggest that the titled compound is antiferromagnetic below T(N) = 17.7 K. Heat capacity measurements confirm the existence of a magnetic phase transition toward a 3D long-range ordered state. These C(P)(T) data have also been used for the calculation of the thermal variations of both the adiabatic temperature change ΔT(ad) and magnetic entropy change ΔS(m) of the material, namely its magnetocaloric effect.

12.
Chemistry ; 18(41): 12970-3, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22936667

RESUMO

Magnetocaloric effect: A Gd(III)-based metal-organic framework (MOF) has an unprecedented large magnetocaloric effect around 2 K. It was shown to be an interesting magnetorefrigerant for ultralow-temperature applications, because it combines the advantages of molecular materials and the robustness of a framework with strong 3D chemical connections (see figure).

13.
Inorg Chem ; 51(5): 2885-92, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22339446

RESUMO

Reported here are the synthesis and structural and topological analysis as well as a magnetic investigation of the new Co(4)(OH)(2)(C(10)H(16)O(4))(3) metal-organic framework. The structural analysis reveals a one-dimensional inorganic subnetwork based on complex chains of cobalt(II) ions in two different oxygen environments. Long alkane dioic acid molecules bridge these inorganic chains together to afford large distances and poor magnetic media between dense spin chains. The thermal dependence of the χT product provides evidence for uncompensated antiferromagnetic interactions within the cobaltous chains. In zero-field, dynamic magnetic susceptibility measurements show slow magnetic relaxation below 5.4 K while both neutron diffraction and heat capacity measurements give evidence of long-range order (LRO) below this temperature. The slow dynamics may originate from the motion of broad domain walls and is characterized by an Arrhenius law with a single energy barrier Δ(τ)/k(B) = 67(1) K for the [10-5000 Hz] frequency range. Moreover, in nonzero dc fields the ac susceptibility signal splits into a low-temperature frequency-dependent peak and a high-temperature frequency-independent peak which strongly shifts to higher temperature upon increasing the bias dc field. Heat capacity measurements have been carried out for various applied field values, and the recorded C(P)(T) data are used for the calculation of the thermal variations of both the adiabatic temperature change ΔT(ad) and magnetic entropy change ΔS(m). The deduced data show a modest magnetocaloric effect at low temperature. Its maximum moves up to higher temperature upon increasing the field variation, in relation with the field-sensibility of the intrachain magnetic correlation length.

14.
Dalton Trans ; 39(20): 4751-6, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20422079

RESUMO

A new 1D coordination polymer comprised of [Mn(III)(6)O(2)(Et-sao)(6)(EtOH)(4)(H(2)O)(2)](2+) units and bithiophene dicarboxylato was synthesized by mixing EtsaoH(2) (salicylaldoxime), H(2)btda (2,2'-bithiophene-5,5'-dicarboxylic acid) and Mn(ClO(4))(2)·6H(2)O in the presence of NEt(4)OH. The crystal structure was determined and consists of Mn(6) clusters bridged by the bithiophene dicarboxylato ligands coordinated to two of the Mn(III) ions of the Mn(6) polynuclear complex. Direct current magnetic measurements show an overall ferromagnetic interaction between the Mn(III) ions within the Mn(6) cluster leading to an S = 12 ground state for the Mn(6) unit. Furthermore, this compound presents single-molecule magnet behaviour. Slow relaxation of the magnetization is observed at low temperature following a thermal activated regime with U(eff) approximately 50 K and tau(0) approximately 2.2 10(-10) s. The magnetic measurements do not show any noticeable interaction between the Mn(6) clusters through the bithiophene dicarboxylato bridges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA