Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-17049897

RESUMO

Arctic charr (Salvelinus alpinus L.) from Lake Thingvallavatn, Iceland occur as four distinct morphs: large benthivorous (LB), dwarf benthivorous (DB), piscivorous (PI) and planktonivorous (PL). The morphs differ with respect to body size, head morphology, growth rate, and life history. The aim of this study was to investigate the paired box protein 7 (Pax7) gene as a candidate for such polymorphisms due to its importance in cranio-facial, skeletal muscle, and central nervous system development. No variation in coding and intronic sequences was found between morphs. We identified 10 alternate Pax7 isoforms with insertions/deletions: a four-residue (GNRT) deletion, a GEASS insertion truncated by the first serine residue (GEAS), and a thirteen-residue insertion (GQYA/TGPEYVYCGT). The latter insertion with a threonine (T) contains a putative casein kinase II (CK-2) phosphorylation site. Pax7 spatial expression patterns were identical in embryos of DB-, LB-, and PL-morphs, and were similar to those described for zebrafish Pax7c, but a difference in temporal expression for segmentation was observed between DB and LB morphs. At the end of segmentation, novel expression was observed in the mandibular region as two bilateral domains. The potential role of multiple alternative splicing of the Pax7 gene for the generation of different Arctic charr morphs is briefly discussed.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Fator de Transcrição PAX7/química , Fator de Transcrição PAX7/genética , Truta/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Desenvolvimento Embrionário , Água Doce , Deleção de Genes , Genoma , Islândia , Íntrons , Dados de Sequência Molecular , Fenótipo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Alinhamento de Sequência , Somitos/fisiologia , Truta/anatomia & histologia , Truta/embriologia
2.
J Exp Biol ; 207(Pt 25): 4343-60, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557021

RESUMO

Thingvallavatn, the largest and one of the oldest lakes in Iceland, contains four morphs of Arctic charr Salvelinus alpinus. Dwarf benthic (DB), large benthic (LB), planktivorous (PL) and piscivorous (PI) morphs can be distinguished and differ markedly in head morphology, colouration and maximum fork length (FL(max)), reflecting their different resource specialisations within the lake. The four morphs in Thingvallavatn are thought to have been isolated for approximately 10 000 years, since shortly after the end of the last Ice Age. We tested the null hypothesis that the pattern of muscle fibre recruitment was the same in all morphs, reflecting their recent diversification. The cross-sectional areas of fast and slow muscle fibres were measured at 0.7 FL in 46 DB morphs, 23 LB morphs, 24 PL morphs and 22 PI morphs, and the ages of the charr were estimated using sacculus otoliths. In fish larger than 10 g, the maximum fibre diameter scaled with body mass (M(b))(0.18) for both fibre types in all morphs. The number of myonuclei per cm fibre length increased with fibre diameter, but was similar between morphs. On average, at 60 mum diameter, there were 2264 nuclei cm(-1) in slow fibres and 1126 nuclei cm(-1) in fast fibres. The absence of fibres of diameter 4-10 mum was used to determine the FL at which muscle fibre recruitment stopped. Slow fibre number increased with body length in all morphs, scaling with M(b)(0.45). In contrast, the recruitment of fast muscle fibres continued until a clearly identifiable FL, corresponding to 18-19 cm in the dwarf morph, 24-26 cm in the pelagic morph, 32-33 cm in the large benthic morph and 34-35 cm in the piscivorous morph. The maximum fast fibre number (FN(max)) in the dwarf morph (6.97x10(4)) was 56.5% of that found in the LB and PI morphs combined (1.23x10(5)) (P<0.001). Muscle fibre recruitment continued until a threshold body size and occurred at a range of ages, starting at 4+ years in the DB morph and 7+ years in the LB and PI morphs. Our null hypothesis was therefore rejected for fast muscle and it was concluded that the dwarf condition was associated with a reduction in fibre number. We then investigated whether variations in development temperature associated with different spawning sites and periods were responsible for the observed differences in muscle cellularity between morphs. Embryos from the DB, LB and PL morphs were incubated at temperature regimes simulating cold subterranean spring-fed sites (2.2-3.2 degrees C) and the general lakebed (4-7 degrees C). Myogenic progenitor cells (MPCs) were identified using specific antibodies to Paired box protein 7 (Pax 7), Forkhead box protein K1-alpha (FoxK1-alpha), MyoD and Myf-5. The progeny showed no evidence of developmental plasticity in the numbers of either MPCs or muscle fibres. Juveniles and adult stages of the DB and LB morphs coexist and have a similar diet. We therefore conclude that the reduction in FN(max) in the dwarf morph probably has a genetic basis and that gene networks regulating myotube production are under high selection pressure. To explain these findings we propose that there is an optimal fibre size, and hence number, which varies with maximum body size and reflects a trade-off between diffusional constraints on fibre diameter and the energy costs of maintaining ionic gradients. The predictions of the optimal fibre size hypothesis and its consequences for the adaptive evolution of muscle architecture in fishes are briefly discussed.


Assuntos
Evolução Biológica , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Truta/anatomia & histologia , Truta/embriologia , Adaptação Fisiológica/fisiologia , Fatores Etários , Análise de Variância , Animais , Pesos e Medidas Corporais , Núcleo Celular/fisiologia , Água Doce , Técnicas Histológicas , Islândia , Imuno-Histoquímica , Microscopia Eletrônica , Modelos Biológicos , Especificidade da Espécie , Temperatura , Truta/genética
3.
DNA Cell Biol ; 23(1): 45-58, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14965472

RESUMO

To study the evolution of the solute carrier family 11 (slc11; formerly Nramp) protein, we isolated and characterized two paralogs from the pufferfish Takifugu rubripes (Fugu). These teleost genes, designated Fugu slc11a-a and Fugu slc11a-b, comprise open reading frames of 1743 nucleotides (581 amino acids) and 1662 nt (554 aa), respectively. The proteins are 81% similar, and both exhibit signature features of the slc11 family of proteins including 12 transmembrane domains, a conserved transport motif and a glycosylated loop. Both Fugu paralogs are more Slc11a2-like based on sequence homology and phylogenetic studies. Analysis of gene environment placed both in the proximity of multiple loci syntenic to human chromosome 12q13, that is, within a SLC11A2 gene environment. However, Fugu slc11a-a also gave one match with chromosome 2q35, where human SLC11A1 resides. Functional diversification was suggested by differences in tissue distribution and subcellular localization. Fugu slc11a-a exhibits a restricted expression profile and a complex subcellular localization, including LAMP1 positive late endosomes/lysosomes in transiently transfected mouse macrophages. Fugu slc11a-b is expressed ubiquitously and localizes solely to late endosomes/lysosomes. This comparative analysis extends our understanding of the evolution and function of this important family of divalent cation transporters. [Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AJ496547/8/9 and AJ496550.]


Assuntos
Proteínas de Transporte de Cátions/genética , Mapeamento Cromossômico , Takifugu/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Sequência Conservada , Cosmídeos/genética , Primers do DNA , Peixes , Biblioteca Gênica , Humanos , Macrófagos , Camundongos , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA