Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 94: 463-468, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705869

RESUMO

There has been a growing recognition of the involvement of the immune system in stress-related disorders. Acute stress leads to the activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells, such as monocytes. Even though acute stress/monocyte interactions have been well-characterized in mice, this is not the case for humans. As such, this study aimed to investigate whether acute stress modulates blood monocyte levels in a subtype-dependent manner and whether the receptor expression of stress-related receptors is affected in humans. Blood was collected from healthy female volunteers at baseline and 1 h after the socially evaluated cold pressor test, after which blood monocyte levels and receptor expression were assessed by flow cytometry. Our results reveal a stress-induced increase in blood monocyte levels, which was independent of monocyte subtypes. Furthermore, colony stimulating factor 1 receptor (CSF-1R) and CD29 receptor expression was increased, while CD62L showed a trend towards increased expression. These results provide novel insights into how acute stress affects the innate immune system.


Assuntos
Monócitos , Animais , Feminino , Expressão Gênica , Camundongos
2.
Nat Aging ; 1(8): 666-676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-37117767

RESUMO

The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Transplante de Microbiota Fecal , Envelhecimento/genética , Encéfalo
3.
Brain Behav Immun ; 84: 209-217, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812778

RESUMO

There has been a growing recognition of the involvement of the gastrointestinal microbiota in the development of stress-related disorders. Acute stress leads to activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells. Both these response systems are independently known to be primed by the microbiota, even though much is still unclear about the role of the gastrointestinal microbiota in acute stress-induced immune activation. In this study, we investigated whether the microbiota influences acute stress-induced changes in innate immunity using conventionally colonised mice, mice devoid of any microbiota (i.e. germ-free, GF), and colonised GF mice (CGF). We also explored the kinetics of stress-induced immune cell mobilisation in the blood, the spleen and mesenteric lymph nodes (MLNs). Mice were either euthanised prior to stress or underwent restraint stress and were then euthanised at various time points (i.e. 0, 45- and 240-minutes) post-stress. Plasma adrenaline and noradrenaline levels were analysed using ELISA and immune cell levels were quantified using flow cytometry. GF mice had increased baseline levels of adrenaline and noradrenaline, of which adrenaline was normalised in CGF mice. In tandem, GF mice had decreased circulating levels of LY6Chi and LY6Cmid, CCR2+ monocytes, and granulocytes, but not LY6C-, CX3CR1+ monocytes. These deficits were normalised in CGF mice. Acute stress decreased blood LY6Chi and LY6Cmid, CCR2+ monocytes while increasing granulocyte levels in all groups 45 min post-stress. However, only GF mice showed stress-induced changes in LY6Chi monocytes and granulocytes 240 min post-stress, indicating impairments in the recovery from acute stress-induced changes in levels of specific innate immune cell types. LY6C-, CX3CR1+ monocytes remained unaffected by stress, indicating that acute stress impacts systemic innate immunity in a cell-type-specific manner. Overall, these data reveal novel cell-type-specific changes in the innate immune system in response to acute stress, which in turn are impacted by the microbiota. In conclusion, the microbiota influences the priming and recovery of the innate immune system to an acute stressor and may inform future microbiota-targeted therapeutics aimed at modulating stress-induced immune activation in stress-related disorders.


Assuntos
Movimento Celular , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Monócitos , Estresse Fisiológico , Animais , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/citologia , Estresse Fisiológico/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30069221

RESUMO

The incidence of inflammatory bowel disease is increasing all over the world, especially in industrialized countries. The aim of the present work was to verify the anti-inflammatory activity of metabolites. In particular, cell-free supernatants of Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Lactobacillus reuteri, and Saccharomyces boulardii have been investigated. Metabolites produced by these probiotics were able to downregulate the expression of PGE-2 and IL-8 in human colon epithelial HT-29 cells. Moreover, probiotic supernatants can differently modulate IL-1ß, IL-6, TNF-α, and IL-10 production by human macrophages, suggesting a peculiar anti-inflammatory activity. Furthermore, supernatants showed a significant dose-dependent radical scavenging activity. This study suggests one of the mechanisms by which probiotics exert their anti-inflammatory activity affecting directly the intestinal epithelial cells and the underlying macrophages. This study provides a further evidence to support the possible use of probiotic metabolites in preventing and downregulating intestinal inflammation as adjuvant in anti-inflammatory therapy.

5.
Nutrition ; 53: 95-102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29674267

RESUMO

OBJECTIVE: In recent years, a great number of studies have been directed toward the evaluation of gastrointestinal microbiota modulation through the introduction of beneficial microorganisms, also known as probiotics. Many studies have highlighted how this category of bacteria is very important for the good development, functioning, and maintenance of our immune system. There is a delicate balance between the immune system, located under the gut epithelial barrier, and the microbiota, but many factors can induce a disequilibrium that leads to an inflammatory state and dysbiosis. The aim of this work is to verify the anti-inflammatory effects of a probiotic formulation of Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum (Serobioma). METHODS: To mimic the natural host compartmentalization between probiotics and immune cells through the intestinal epithelial barrier in vitro, the transwell model was used. We focused on a particular subset of immune cells that play a key role in the mucosal immune system. The immunomodulatory effects of probiotic formulation were investigated in the human macrophage cell line THP1 and macrophages derived from ex vivo human peripheral blood mononuclear cells. RESULTS: Probiotic formulation induced a significant increase in anti-inflammatory cytokine interleukin-10 (IL-10) production and was able to decrease the secretion of the major proinflammatory cytokines IL-1ß and IL-6 by 70% and 80%, respectively. Finally, for the first time, the ability of probiotic formulation to favor the macrophage M2 phenotype has been identified. CONCLUSION: The transwell model is an intriguing toll approach to studying the human epithelial barrier.


Assuntos
Anti-Inflamatórios/farmacologia , Bifidobacterium animalis , Bifidobacterium longum , Inflamação/prevenção & controle , Lacticaseibacillus rhamnosus , Probióticos/farmacologia , Humanos , Técnicas In Vitro , Mucosa Intestinal , Macrófagos/efeitos dos fármacos
6.
Mediators Inflamm ; 2017: 8102170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375200

RESUMO

Prevalence of thyroid dysfunction and its impact on cognition in older people has been demonstrated, but many points remain unclarified. In order to study the effect of aging on the thyroid gland, we compared the thyroid gland of very old mice with that of younger ones. We have first investigated the changes of thyroid microstructure and the possibility that molecules involved in thyroid function might be associated with structural changes. Results from this study indicate changes in the height of the thyrocytes and in the amplitude of interfollicular spaces, anomalous expression/localization of thyrotropin, thyrotropin receptor, and thyroglobulin aging. Thyrotropin and thyrotropin receptor are upregulated and are distributed inside the colloid while thyroglobulin fills the interfollicular spaces. In an approach aimed at defining the behavior of molecules that change in different physiopathological conditions of thyroid, such as galectin-3 and sphingomyelinase, we then wondered what was their behavior in the thyroid gland in aging. Importantly, in comparison with the thyroid of young animals, we have found a higher expression of galectin-3 and a delocalization of neutral sphingomyelinase in the thyroid of old animals. A possible relationship between galectin-3, neutral sphingomyelinase, and aging has been discussed.


Assuntos
Envelhecimento/patologia , Galectina 3/fisiologia , Esfingomielina Fosfodiesterase/fisiologia , Glândula Tireoide/patologia , Animais , Galectina 3/análise , Masculino , Camundongos , Receptores da Tireotropina/análise , Esfingomielina Fosfodiesterase/análise , Tireotropina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA