Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 3: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138692

RESUMO

The gut microbiome and lipid metabolism are both recognized as essential components in the maintenance of metabolic health. The mechanisms involved are multifactorial and (especially for microbiome) poorly defined. A strategic approach to investigate the complexity of the microbial influence on lipid metabolism would facilitate determination of relevant molecular mechanisms for microbiome-targeted therapeutics. E. coli is associated with obesity and metabolic syndrome and we used this association in conjunction with gnotobiotic models to investigate the impact of E. coli on lipid metabolism. To address the complexities of the integration of the microbiome and lipid metabolism, we developed transcriptomics-driven lipidomics (TDL) to predict the impact of E. coli colonization on lipid metabolism and established mediators of inflammation and insulin resistance including arachidonic acid metabolism, alterations in bile acids and dietary lipid absorption. A microbiome-related therapeutic approach targeting these mechanisms may therefore provide a therapeutic avenue supporting maintenance of metabolic health.

2.
Aging (Albany NY) ; 9(7): 1698-1720, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783713

RESUMO

The microbiome has been demonstrated to play an integral role in the maintenance of many aspects of health that are also associated with aging. In order to identify areas of potential exploration and intervention, we simultaneously characterized age-related alterations in gut microbiome, muscle physiology and serum proteomic and lipidomic profiles in aged rats to define an integrated signature of the aging phenotype. We demonstrate that aging skews the composition of the gut microbiome, in particular by altering the Sutterella to Barneseilla ratio, and alters the metabolic potential of intestinal bacteria. Age-related changes of the gut microbiome were associated with the physiological decline of musculoskeletal function, and with molecular markers of nutrient processing/availability, and inflammatory/immune status in aged versus adult rats. Altogether, our study highlights that aging leads to a complex interplay between the microbiome and host physiology, and provides candidate microbial species to target physical and metabolic decline during aging by modulating gut microbial ecology.


Assuntos
Envelhecimento/fisiologia , Microbioma Gastrointestinal , Sarcopenia , Animais , Bactérias/classificação , Biomarcadores/sangue , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno , Ratos
3.
Genome Announc ; 5(22)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572322

RESUMO

Escherichia coli is one of the common inhabitants of the mammalian gastrointestinal track. We isolated a strain from an ob/ob mouse and performed whole-genome sequencing, which yielded a chromosome of ~5.1 Mb and three plasmids of ~160 kb, ~6 kb, and ~4 kb.

4.
Sci Rep ; 6: 32484, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577172

RESUMO

The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Animais , Bacteroidetes/classificação , Bacteroidetes/crescimento & desenvolvimento , Transplante de Microbiota Fecal , Firmicutes/classificação , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/microbiologia , Intolerância à Glucose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/patologia , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento
5.
Sci Rep ; 6: 31655, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530237

RESUMO

Development of NGS has revolutionized the analysis in microbial ecology contributing to our deeper understanding of microbiota in health and disease. However, the quality, quantity and confidence of summarized taxonomic abundances are in need of further scrutiny due to sample dependent and independent effects. In this article we introduce 'AVIT (Abundance and Variability In Taxonomy), an unbiased method to enrich for assigned members of microbial communities. As opposed to using a priori thresholds, 'AVIT uses inherent abundance and variability of taxa in a dataset to determine the inclusion or rejection of each taxa for further downstream analysis. Using in-vitro and in-vivo studies, we benchmarked performance and parameterized 'AVIT to establish a framework for investigating the dynamic range of microbial community membership in clinically relevant scenarios.


Assuntos
Microbiota , Algoritmos , Animais , Vida Livre de Germes , Humanos , Camundongos
6.
Anal Chem ; 88(15): 7617-26, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27396289

RESUMO

Longitudinal studies aim typically at following populations of subjects over time and are important to understand the global evolution of biological processes. When it comes to longitudinal omics data, it will often depend on the overall objective of the study, and constraints imposed by the data, to define the appropriate modeling tools. Here, we report the use of multilevel simultaneous component analysis (MSCA), orthogonal projection on latent structures (OPLS), and regularized canonical correlation analysis (rCCA) to study associations between specific longitudinal urine metabonomics data and microbiome data in a diet-induced obesity model using C57BL/6 mice. (1)H NMR urine metabolic profiling was performed on samples collected weekly over a period of 13 weeks, and stool microbial composition was assessed using 16S rRNA gene sequencing at three specific time periods (baseline, first week response, end of study). MSCA and OPLS allowed us to explore longitudinal urine metabonomics data in relation to the dietary groups, as well as dietary effects on body weight. In addition, we report a data integration strategy based on regularized CCA and correlation analyses of urine metabonomics data and 16S rRNA gene sequencing data to investigate the functional relationships between metabolites and gut microbial composition. Thanks to this workflow enabling the breakdown of this data set complexity, the most relevant patterns could be extracted to further explore physiological processes at an anthropometric, cellular, and molecular level.


Assuntos
Dieta Hiperlipídica , Metabolômica , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal , Fezes/microbiologia , Análise dos Mínimos Quadrados , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Urinálise
7.
PLoS One ; 8(12): e83689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391809

RESUMO

The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.


Assuntos
Bactérias/crescimento & desenvolvimento , Alimentação com Mamadeira , Dieta , Fezes/microbiologia , Comportamento Alimentar , Trato Gastrointestinal/microbiologia , Microbiota , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Aleitamento Materno , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenoma , Camundongos , RNA Ribossômico 16S/genética
8.
J Biosci ; 37(2): 221-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22581327

RESUMO

The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.


Assuntos
Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Metagenoma , Adulto , Biodiversidade , Blastocystis/genética , Blastocystis/isolamento & purificação , Aleitamento Materno , Feminino , Fungos/genética , Fungos/isolamento & purificação , Humanos , Lactente , Fórmulas Infantis , Tipagem Molecular/métodos , Mães , RNA Ribossômico 18S/genética
9.
PLoS One ; 7(1): e30273, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272321

RESUMO

BACKGROUND: The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier. METHODOLOGY/PRINCIPAL FINDINGS: Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice. RESULTS: In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota. CONCLUSIONS/SIGNIFICANCE: The results of these experiments demonstrate the integration of environmental and genetic factors in the ecological succession of the commensal flora in mammalian tissue. The association of Nod2 genotype (and other host polymorphisms) and environmental factors likely combine to influence the ecological succession of the tissue-associated microflora accounting in part for their association with the pathogenesis of inflammatory bowel diseases.


Assuntos
Bactérias/genética , Colo/metabolismo , Metagenoma/genética , Proteína Adaptadora de Sinalização NOD2/genética , Animais , Bactérias/classificação , Bactérias/imunologia , Translocação Bacteriana/imunologia , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Citocinas/imunologia , Citocinas/metabolismo , Sulfato de Dextrana , Ecossistema , Epitélio/imunologia , Epitélio/metabolismo , Epitélio/microbiologia , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Proteína Adaptadora de Sinalização NOD2/deficiência , Filogenia , RNA Ribossômico 16S/genética
10.
Res Microbiol ; 157(10): 928-37, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17070674

RESUMO

The prokaryotic diversity associated with an Indian soda lake (Lonar Crater Lake) located in a basaltic soil area was investigated using a culture-independent approach. Community DNA was extracted directly from four sediment samples obtained by coring to depths of 10-20 cm. Small subunit rRNA genes (16S rDNA) were amplified by PCR using primers specific to the domains Bacteria and Archaea. The PCR products were cloned and sequenced. For the bacterial rDNA clone library, 500 clones were randomly selected for further analysis. After restriction fragment length polymorphism (RFLP) analysis and subsequent sequencing, a total of 44 unique phylotypes were obtained. These phylotypes spanned a wide range within the domain Bacteria, occupying eight major lineages/phyla. 34% of the clones were classified as firmicutes. The other clones were grouped into proteobacteria (29.5%), actinobacteria (6.8%), deinococcus-thermus (4.5%), cytophages-flavobacterium-bacteroidetes (13.3%), planctomycetes (6.8%), cyanobacteria (4.5%) and spirochetes (2.27%). In the case of the archaeal 16S rDNA library, analysis of 250 randomly selected clones revealed the presence of 13 distinct phylotypes; 5 phylotypes were associated with Crenarchaeota and 8 with Euryarchaeota. Most of the euryarchaeota sequences were related to methanogens. Findings from this molecular study of a site investigated for the first time have revealed the presence of a highly diverse bacterial population and a comparatively less diverse archaeal population. The majority ( approximately 80%) of the cloned sequences show little affiliation with known taxa (<97% sequence similarity) and may represent novel taxa/sequences and organisms specifically adapted to this basaltic soda lake environment. Diversity analyses demonstrate greater diversity and evenness of bacterial species compared to a skewed representation of species for Archaea.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Arqueal/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Índia , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
11.
Microbiol Res ; 161(3): 252-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16765842

RESUMO

Seventy-five marine bacterial strains associated with four species of sponges (Echinodictyum sp., Spongia sp., Sigmadocia fibulatus and Mycale mannarensis) were isolated from the Tuticorin coast, Gulf of Mannar region. The agar-overlay method was used to screen for antibiotic production by these strains against four bacteria, viz., Bacillus subtilis, Escherichia coli, Vibrio parahaemolyticus, and Vibrio harveyi and one fungal pathogen, viz., Candida albicans. Twenty-one per cent of the bacterial strains were found to be antibiotic producers and their activities ranged from broad spectral to species specific. A strain coded SC3 was found to be highly potent and was mass cultured. The ethyl acetate extract of the culture broth was further fractionated by reverse phase HPLC and the active fraction identified. In addition, SC3 was subjected to morphological and physiological characterization. The results of the tests showed SC3 to be a Gram-positive rod, sporulating, motile, catalase and oxidase positive. Phylogenetic analysis based on comparative analysis of sequenced 16s rRNA of the active strains indicated a preponderance of bacteria belonging to Vibrio and Bacillus genera with 95-99% sequence similarities. To our knowledge this is the first report on phylogenetic identification of antibiotic producing bacteria associated with sponges from Indian waters.


Assuntos
Antibacterianos/biossíntese , Bacilos Gram-Positivos Formadores de Endosporo/isolamento & purificação , Poríferos/microbiologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacilos Gram-Positivos Formadores de Endosporo/classificação , Bacilos Gram-Positivos Formadores de Endosporo/fisiologia , Bacilos Gram-Positivos , Índia , Biologia Marinha , Testes de Sensibilidade Microbiana , Oceanos e Mares , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie , Vibrio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA