RESUMO
Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed. Common differentially expressed genes (DEGs) were identified through meta-analysis, revealing 180 DEGs. DEGs were implicated in leukocyte transendothelial migration, PI3K-Akt, chemokine, NOD-like receptors, TNF signaling pathways, and pathways in cancer. Protein-protein interaction network and cluster analysis identified 14 central IBD players, which were validated using eight external datasets. Disease module construction using the NeDRex platform identified nine out of 14 disease-associated genes (CYBB, RAC2, GNAI2, ITGA4, CYBA, NCF4, CPT1A, NCF2, and PCK1). Immune infiltration profile assessment revealed a significantly higher degree of infiltration of neutrophils, activated dendritic cells, plasma cells, mast cells (resting/activated), B cells (memory/naïve), regulatory T cells, and M0 and M1 macrophages in inflamed IBD tissue. Collectively, this study identified the immune infiltration profile and nine disease-associated genes as potential modulators of IBD pathogenesis, offering insights into disease molecular mechanisms, and highlighting potential disease modulators and immune cell dynamics.
Assuntos
Biologia Computacional , Mapas de Interação de Proteínas , Humanos , Biologia Computacional/métodos , Mapas de Interação de Proteínas/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Transcriptoma , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Perfilação da Expressão Gênica , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Redes Reguladoras de Genes , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , NADPH OxidasesRESUMO
BACKGROUND: COVID-19 illness severity ranges from mild- to life-threatening cases necessitating critical care. Rapid prediction of disease severity and the need for critical care support in COVID-19 patients remain essential, not only for current management but also for preparedness in future pandemics. This study aimed to assess hematological parameters as predictors of intensive care unit (ICU) admission and survival in COVID-19 patients, providing insights applicable to a broad range of infectious diseases. METHODS: A case-control study was conducted at Hospital Raja Perempuan Zainab II, a tertiary referral hospital in Kelantan, Malaysia, from March 2020 to August 2021. Demographics, clinical, and laboratory data were retrieved from patients' medical records. Statistical analyses, including the Chi-square (χ2) test, independent t-tests, and simple and multiple logistic regressions, were used to analyze the data. A receiver operating characteristic (ROC) curve analysis was conducted to assess the accuracy of the predictors. RESULTS: The median age was 51 years, with females comprising 56.7% (n=148) and males 43.3% (n=113). A total of 88.5% of patients were admitted to non-ICU wards, with a mortality rate of 5.7%. Significant differences were observed in the distribution of hematological parameters between ICU-admitted and non-admitted patients. Neutrophil (OR: 23.96, 95% CI: 7.296-78.675) and white blood cell (WBC) count (OR: 36.677, 95% CI: 2.086-644.889) were the most significant predictors for ICU admission and survival, respectively. CONCLUSIONS: WBC and neutrophil counts exhibited high predictive value for ICU admission, while WBC, neutrophil, lymphocyte, and immature granulocyte (IG) counts were significant predictors of survival status among COVID-19 patients. These findings underscore the continued relevance of hematological markers in managing severe respiratory infections and improving critical care triage, with implications for current and future healthcare challenges.
RESUMO
Background: Breast cancer developed at a young age (≤45 years) is hypothesized to have unique biology; however, findings in this field are controversial. Methods: We compared the whole transcriptomic profile of young vs. old-age breast cancer using DNA microarray. RNA was extracted from 13 fresh estrogen receptor (ER)-positive primary breast cancer tissues of untreated patients (7 = young age ≤45 years and 6 = old age ≥55 years). In silico validation for the differentially expressed genes (DEGs) by young-age patients was conducted using The Cancer Genome Atlas (TCGA) database. Next, we analyzed the protein expression encoded by two of the significantly down-regulated genes by young-age patients, Glycine N-acyltransferase-like 1 (GLYATL-1) and Ran-binding protein 3 like (RANBP3L), using immunohistochemical analysis in an independent cohort of 56 and 74 ER-positive pre-therapeutic primary breast cancer tissues, respectively. Results: 12 genes were significantly differentially expressed by young-age breast cancers (fold change >2 or <2- with FDR p-value < 0.05). TCGA data confirmed the differential expression of six genes. Protein expression analysis of GLYATL-1 and RANBP3L did not show heterogeneous expression between young and old-age breast cancer tissues. Loss of expression of GLYATL-1 was significantly (p-value 0.005) associated with positive lymph node status. Higher expression of RANBP3L was significantly associated with breast cancers with lower histopathological grades (p-value 0.038). Conclusions: At the transcriptomic level, breast cancer developed in young and old age patients seems homogenous. The variation in the transcriptomic profiles can be attributed to the other clinicopathological characteristics rather than the age of the patient.
RESUMO
Biomarker identification is imperative for invasive breast carcinoma, which is more aggressive and associated with higher mortality and worse prognosis in younger patients (<45 years) than in older patients (>50 years). The current study aimed to investigate angiopoietin-like protein 4 (ANGPTL4) and insulin-like growth factor-1 (IGF-1) protein expression in breast tissue from young patients with breast carcinoma. Immunohistochemical staining was applied in formalin-fixed, paraffin-embedded samples of breast carcinoma tissue from young patients aged <45 years at the time of diagnosis. Both proteins were expressed in the majority of cases. The highest frequency of positive ANGPTL4 and IGF-1 expression was observed in the luminal A subtype, whereas the HER2-overexpression subtype exhibited the lowest expression frequency for both proteins. There was no significant association between ANGPTL4 (p = 0.897) and IGF-1 (p = 0.091) expression and molecular subtypes of breast carcinoma. The histological grade was a significant predictor of ANGPTL4 expression (grade 1 vs. grade 3, adjusted odds ratio = 12.39, p = 0.040). Therefore, ANGPTL-4 and IGF-1 expressions are common in young breast carcinoma tissue. There is a potential use of them as biomarkers in breast carcinoma.
RESUMO
Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.