Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(25): e2310123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38214404

RESUMO

MnTe emerges as an enormous potential for medium-temperature thermoelectric applications due to its lead-free nature, high content of Mn in the earth's crust, and superior mechanical properties. Here, it is demonstrate that multiple valence band convergence can be realized through Pb and Ag incorporations, producing large Seebeck coefficient. Furthermore, the carrier concentration can be obviously enhance by Pb and Ag codoping, contributing to significant enhancement of power factor. Moreover, microstructural characterizations reveal that PbTe nanorods can be introduced into MnTe matrix by alloying Pb. This can modify the microstructure into all-scale hierarchical architectures (including PbTe nanorods, enhances point-defect scattering, dense dislocations and stacking faults), strongly lowering lattice thermal conductivity to a record low value of 0.376 W m-1 K-1 in MnTe system. As a result, an ultra-high ZT of 1.5 can be achieved in MnTe thermoelectric through all-scale hierarchical structuring, optimized carrier concentration, and valence band convergence, outperforming most of MnTe-based thermoelectric materials.

2.
ACS Appl Mater Interfaces ; 15(17): 21187-21197, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083164

RESUMO

GeTe and its derivatives emerging as a promising lead-free thermoelectric candidate have received extensive attention. Here, a new route was proposed that the minimization of κL in GeTe through considerable enhancement of acoustic phonon scattering by introducing ultrafine ferroelectric domain structure. We found that Bi and Ca dopants induce strong atomic strain disturbance in the GeTe matrix because of large differences in atom radius with host elements, leading to the formation of ultrafine ferroelectric domain structure. Furthermore, large strain field and mass fluctuation induced by Bi and Ca codoping result in further reduced κL by effectively shortening the phonon relaxation time. The co-existence of ultrafine ferroelectric domain structure, large strain field, and mass fluctuation contribute to an ultralow lattice thermal conductivity of 0.48 W m-1 K-1 at 823 K. Bi and Ca codoping significantly enhances the Seebeck coefficient and power factor through reducing the energy offset between light and heavy valence bands of GeTe. The modified band structure boosts the power factor up to 47 µW cm-1 K-2 in Ge0.85Bi0.09Ca0.06Te. Ultimately, a high ZT of ∼2.2 can be attained. This work demonstrates a new design paradigm for developing high-performance thermoelectric materials.

3.
Adv Sci (Weinh) ; 10(17): e2206342, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092577

RESUMO

MnTe has been considered a promising candidate for lead-free mid-temperature range thermoelectric clean energy conversions. However, the widespread use of this technology is constrained by the relatively low-cost performance of materials. Developing environmentally friendly thermoelectrics with high performance and earth-abundant elements is thus an urgent task. MnTe is a candidate, yet a peak ZT of 1.4 achieved so far is less satisfactory. Here, a remarkably high ZT of 1.6 at 873 K in MnTe system is realized by facilitating multiple valence band convergence and localized lattice engineering. It is demonstrated that SbGe incorporation promotes the convergence of multiple electronic valence bands in MnTe. Simultaneously, the carrier concentration can be optimized by SbGeS alloying, which significantly enhances the power factor. Simultaneously, MnS nanorods combined with dislocations and lattice distortions lead to strong phonon scattering, resulting in a markedly low lattice thermal conductivity(κlat ) of 0.54 W m K-1 , quite close to the amorphous limit. As a consequence, extraordinary thermoelectric performance is achieved by decoupling electron and phonon transport. The vast increase in ZT promotes MnTe as an emerging Pb-free thermoelectric compound for a wide range of applications in waste heat recovery and power generation.

4.
ACS Appl Mater Interfaces ; 14(3): 4091-4099, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35001609

RESUMO

SnSe crystals have gained considerable interest for their outstanding thermoelectric performance. Here, we achieve excellent thermoelectric properties in Sn0.99-xPbxZn0.01Se crystals via valence band convergence and point-defect engineering strategies. We demonstrate that Pb and Zn codoping converges the energy offset between multiple valence bands by significantly modifying the band structure, contributing to the enhancement of the Seebeck coefficient. The carrier concentration and electrical conductivity can be optimized, leading to an enhanced power factor. The dual-atom point-defect effect created by the substitution of Pb and Zn in the SnSe lattice introduces strong phonon scattering, significantly reducing the lattice thermal conductivity to as low as 0.284 W m-1 K-1. As a result, a maximum ZT value of 1.9 at 773 K is achieved in Sn0.93Pb0.06Zn0.01Se crystals along the bc-plane direction. This study highlights the crucial role of manipulating multiple electronic valence bands in further improving SnSe thermoelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA