Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 389: 117436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277990

RESUMO

BACKGROUNDS AND AIMS: The role of inflammation in driving atherosclerosis is well-established. It exerts systemic effects beyond the local site of plaque formation. In the context of coronary artery disease (CAD), the proteins that show altered levels in the plasma, are potentially important for understanding the key regulatory mechanism in the pathogenesis of atherosclerosis. A case-control study revealed that plasma soluble Peptidoglycan Recognition Protein 2 (PGLYRP2) primarily produced by the liver, is increased in subjects with CAD. Furthermore, the concentration of PGLYRP2 in the blood correlates with the severity of coronary artery disease. Thus, it raises interest in understanding the exact role of the protein in aortic inflammation and plaque progression. METHODS: We evaluated the plasma concentration of PGLYRP2 in three distinct groups: patients with CAD (N = 68), asymptomatic individuals (N = 34), and healthy volunteers (N = 20). Furthermore, we investigated the correlation between disease severity and PGLYRP2 levels in CAD patients. To identify potential binding partners of PGLYRP2, we employed computational analysis. We verified the PGLYRP2-NOD2 interaction in macrophage cells and elucidated the inflammatory pathways activated by PGLYRP2 within these cells. To assess the impact of PGLYRP2, we examined its effects in the atherosclerotic mice model (ApoE-/-). RESULTS: In this study, we report for the first time that Nucleotide-binding Oligomerization domain 2 (NOD2) which is expressed on the surface of macrophages, is a receptor of PGLYRP2. The N-terminal domain of PGLYRP2 directly binds to NOD2 and activates the NOD2-RIP2-NFκB cascade that promotes the secretion of proinflammatory cytokines like TNFα, IL1ß, and IL-8. In the atherosclerotic mice model (ApoE-/-) we demonstrate that elevated PGLYRP2 level is parallel with increased proinflammatory cytokines in the plasma when fed a High Cholesterol Diet (HCD). Immunohistochemical analysis reveals that PGLYRP2 is co-localized with NOD2 on the macrophages at the site of the lesion. CONCLUSIONS: Taken together, our data demonstrate that NOD2 acts as a receptor of PGLYRP2 on macrophages, which mediates the activation of the NOD2-RIP2-NFκB pathway and promotes inflammation, thus significantly contributing to the development and progression of atherosclerosis.


Assuntos
Proteínas de Transporte , Doença da Artéria Coronariana , N-Acetil-Muramil-L-Alanina Amidase , Animais , Humanos , Camundongos , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Inflamação/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo
2.
FASEB Bioadv ; 4(2): 121-137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141476

RESUMO

Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1ß in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.

3.
Panminerva Med ; 63(2): 104-109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33878847

RESUMO

There is a rising burden of non-communicable disease (NCD), especially cardiovascular diseases (CVD) in the developing nations to an extent that they are sometimes terms as NCD epidemics. If unchecked, these NCD epidemics, can impact the healthcare systems and adversely affect the development of the whole country. While CVD is a matter of concern worldwide, it is even more so in low- and middle-income countries, where the incidence and prevalence of these diseases are much worse than developed countries, owning to their large population. According to the WHO, CVDs cause 28.5% of all deaths, in the developing nations. Even within the developing countries, the profile of CVD varies greatly, depending on the phase of epidemiological transition the country is currently undergoing. While primary prevention is about treating risk factors to prevent CVD, primordial prevention refers to avoiding the development of risk factors in the first place. As we now know, atherosclerosis starts in youth and is related to dyslipidemia, smoking, and hypertension, Body Mass Index and blood glucose levels. Therefore, the primordial prevention must start early in life. High-quality clinical trials have traditionally been mainly focusing on primary and secondary prevention settings. There are some key studies that evaluated the role of diet in primordial setting that were discussed in this review.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Doenças não Transmissíveis/prevenção & controle , Prevenção Primária , Doenças Cardiovasculares/epidemiologia , Países em Desenvolvimento , Dieta , Humanos
4.
J Mol Biol ; 432(17): 4922-4941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687853

RESUMO

Cholesterol homeostasis results from a delicate interplay between influx and efflux of free cholesterol primarily mediated by ABCA1. Here we report downregulation of ABCA1 in hyper-cholesterol conditions in macrophages, which might be responsible for compromised reverse cholesterol transport and hyperlipidemia. Surprisingly, this is countered by the upregulation of a lesser known family member ABCA5 to maintain cholesterol efflux. The relative contribution of ABCA1 and ABCA5 toward cholesterol efflux was evaluated and revealed ABCA5 as the primary efflux mediator under high cholesterol load. These observations were correlated to cholesterol load in circulation in vivo, and we observed an inverse expression profile in mice models of atherosclerosis (ApoE-/-) and hyperlipidemia (PPARα-/-) in response to high cholesterol diet. Observations were further validated in human plasma samples. Simulation studies revealed a unique conformation of ABCA5 proposing a favored route for cholesterol loading onto high-density lipoproteins for reverse cholesterol transport. Thus, our study implicates a functional complementation between these two transporters, formulating an efficient strategy to maintain efflux in cholesterol excess conditions in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/sangue , Dislipidemias/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Células RAW 264.7 , Células THP-1
5.
Clin Sci (Lond) ; 133(22): 2283-2299, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31713591

RESUMO

The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with FcÉ£ receptor I (FcÉ£RI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcÉ£R1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


Assuntos
Doença da Artéria Coronariana/sangue , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/sangue , Adenina/análogos & derivados , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular , Progressão da Doença , Humanos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Oxazinas , Piperidinas , Pirazóis , Piridinas , Pirimidinas , Quinase Syk/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA