Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 355: 124207, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795816

RESUMO

Bacteria-assisted phytoremediation uses bacteria to promote plant health and improve its ability to remediate toxic heavy metals like Arsenic (As). Here, we isolated rhizobacteria and identified them as Bacillus subtilis strain IU31 using 16S rDNA sequencing. IU31 showed phosphate solubilization potential on Pikovskaya agar medium and produced siderophores, which were detected on Chromium Azurol-S (CAS) agar medium. Indole-3-acetic acid (IAA) and gibberellins (GAs), namely GA1, GA3, GA4, GA7, GA9, GA12, GA15, and GA24, were quantified by GC/MS-SIM analysis. The expression levels of genes involved in GA and IAA biosynthesis, such as cyp112, cyp114, trpA, and trpB, were assessed using semi-quantitative RT-PCR. Plant bioassays showed that As at a 15 mg/kg concentration reduced plant growth, chlorophyll content, and biomass. However, IU31 inoculation significantly improved plant growth dynamics, enhancing As accumulation by up to 50% compared with uninoculated plants. IU31 inoculation induced the bioconcentration factor (BCF) and bioaccumulation factor (BAF) of As in plants compared to uninoculated plants, but the translocation factor (TF) of As was unaffected by IU31 inoculation. IU31 inoculation effectively restored glutathione-S-transferase (GST) and catalase (CAT) enzyme activities, as well as glutathione (GSH) and hydrogen peroxide concentrations to nearly normal levels, which were significantly elevated in plants exposed to As stress. These results show that IU31 improves plant health and growth by producing IAA and GAs, which might contribute to the uptake and detoxification of As.

2.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257309

RESUMO

Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface coverage and biomass µm2) and three-dimensional (3D) surface plots. It was observed that CA at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05) reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced to 24.80 µg/mL and protein (EPS) to 41.47 µg/mL. ImageJ software (version 1.54 g) was used to process florescence images, and it was observed that the biofilm mass was reduced to 213 (µm2); the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control efficacy against S. mutans associated with dental plaque under tested conditions.


Assuntos
Cárie Dentária , Placa Dentária , Humanos , Ácidos Cumáricos , Cárie Dentária/tratamento farmacológico , Placa Dentária/tratamento farmacológico , Simulação de Acoplamento Molecular , Streptococcus mutans , Biofilmes , Dentina
3.
Membranes (Basel) ; 12(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36295687

RESUMO

Finding new biological ways to control biofouling of the membrane in reverse osmosis (RO) is an important substitute for synthetic chemicals in the water industry. Here, the study was focused on the antimicrobial, biofilm formation, and biofilm dispersal potential of rhamnolipids (RLs) (biosurfactants). The MTT assay was also carried out to evaluate the effect of RLs on biofilm viability. Biofilm was qualitatively and quantitatively assessed by crystal violet assay, light microscopy, fluorescence microscopy (bacterial biomass (µm2), surface coverage (%)), and extracellular polymeric substances (EPSs). It was exhibited that RLs can reduce bacterial growth. The higher concentrations (≥100 mg/L) markedly reduced bacterial growth and biofilm formation, while RLs exhibited substantial dispersal effects (89.10% reduction) on preformed biofilms. Further, RLs exhibited 79.24% biomass reduction while polysaccharide was reduced to 60.55 µg/mL (p < 0.05) and protein to 4.67 µg/mL (p < 0.05). Light microscopy revealed biofilm reduction, which was confirmed using fluorescence microscopy. Microscopic images were processed with BioImageL software. It was revealed that biomass surface coverage was reduced to 1.1% at 1000 mg/L of RLs and that 43,245 µm2 of biomass was present for control, while biomass was reduced to 493 µm2 at 1000 mg/L of RLs. Thus, these data suggest that RLs have antimicrobial, biofilm control, and dispersal potential against membrane biofouling.

4.
Saudi J Biol Sci ; 29(3): 1673-1682, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280554

RESUMO

Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.

5.
Environ Pollut ; 293: 118508, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793914

RESUMO

Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0-30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5-25 mg/L of Cd. Expression of Cd response genes was quantified through qRT-PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27-30 µg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., "HMA2, HMA3, and HMA4" and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.


Assuntos
Metais Pesados , Poluentes do Solo , Adenosina Trifosfatases , Bactérias , Biodegradação Ambiental , Cádmio , Expressão Gênica , Metais Pesados/análise , Raízes de Plantas/química , Poluentes do Solo/análise
6.
Antibiotics (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36671238

RESUMO

OBJECTIVES: Antibiotics are valuable therapeutics. However, the unwarranted and excessive use of these antimicrobials in food animals and the consequent contamination of the environment have been associated with the emergence and spread of antimicrobial resistance. Continuous surveillance and monitoring of antimicrobial resistance among E. coli isolates is recommended, not only for bovine health but also for public health. This study aims to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of fecal E. coli isolates from healthy cows. METHODOLOGY: The in vitro, phenotypic antibiotic resistance of isolates was measured via the Kirby-Bauer disc-diffusion method against twenty-seven antibiotics. The ß-lactamase enzymatic activities of the strains were also investigated. For the assessment of virulence potential, fecal E. coli isolates were subjected to several in vitro pathogenicity assays, including biofilm formation ability, blood hemolysis, complement resistance, and growth in human urine. Phylogroup determination and virulence-associated genes were detected via multiplex PCR. RESULTS: In vitro antibiotic resistance profiling showed that 186/200 (93%) of the isolates were multidrug-resistant (MDR), with the highest resistance against penicillin, tetracycline, fluoroquinolone, and macrolide classes of antibiotics. Of particular concern was the phenotypic resistance to colistin in 52/200 isolates (26%), though 16% of the total isolates harbored mcr1, the genetic determinant of colistin. Despite the scarce use of fluoroquinolone, cephalosporin, and carbapenem in the agricultural sector, resistance to these classes was evident due to the presence of extended-spectrum ß-lactamase (ESBL) in 41% of E. coli isolates. The ß-lactamase genotyping of E. coli isolates showed that 47% of isolates harbored either blaCTX or blaTEM. Approximately 32% of isolates were resistant to serum complement, and their growth in human urine was evident in 18% of isolates, indicating a possible infection of these isolates in high nitrogenous condition. Phylogrouping showed that the most prevalent phylogenetic group among fecal E. coli isolates was phylogroup B1 (57%), followed by phylogroups A (33%), D (6%), and B2 (4%). The most prevalent virulence-associated genes in fecal E. coli were fimH, iss and tatT. Results showed that ten isolates (5%) harbored the stx1 gene, the genetic marker of enterohemorrhagic E. coli. This study provides insights into the antibiotic resistance and virulence profiling of the fecal E. coli isolates from healthy cows. These results emphasize the need for imposing regulations on the proper use of antibiotics and growth promoters in food-producing animals.

7.
Pathogens ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832641

RESUMO

Exploring biological agents to control biofilm is a vital alternative in combating pathogenic bacteria that cause dental plaque. This study was focused on antimicrobial, biofilm formation and biofilm dispersal efficacy of Gallic acid (GA) against bacteria, including Proteus spp., Escherichia coli, Pseudomonas spp., Salmonella spp., Streptococcus mutans, and Staphylococcus aureus and multispecies bacteria. Biofilm was qualitatively and quantitatively assessed by crystal violet assay, florescence microscopy (bacterial biomass (µm2), surface coverage (%)) and extracellular polymeric substances (EPS). It was exhibited that GA (1-200 mg/L) can reduce bacterial growth. However, higher concentrations (100-200 mg/L) markedly reduced (86%) bacterial growth and biofilm formation (85.5%), while GA did not exhibit any substantial dispersal effects on pre-formed biofilm. Further, GA (20-200 mg/L) exhibited 93.43% biomass reduction and 88.6% (p < 0.05) EPS (polysaccharide) reduction. Microscopic images were processed with BioImageL software. It was revealed that biomass surface coverage was reduced to 2% at 200 mg/L of GA and that 13,612 (µm2) biomass was present for control, while it was reduced to 894 (µm2) at 200 mg/L of GA. Thus, this data suggest that GA have antimicrobial and biofilm control potential against single and multispecies bacteria causing dental plaque.

8.
Microbiol Res ; 252: 126828, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34543948

RESUMO

Almost one-third of all proteins require metal ions as an essential component in key biological processes and approximately half of all enzymes are associated with one or more metal ions. The naturally occurring selenium is very toxic at higher levels, but few bacteria can reduce it into the less toxic insoluble elemental selenium. Selenium is required for the synthesis of selenocysteine, an essential residue involved in the active sites of various enzymes. The purple non-sulphur bacteria, Rhodobacter sphaeroidesis demonstrated for its selenite reduction capacity. The exact mechanism of selenite toxicity is unknown but it reacts with glutathione to form selenodiglutathione, producing the highly toxic compounds namely, H2O2and O2-. A R. sphaeroidesstrain with mutated takP gene, a member of the TRAP (tripartite ATP-independent periplasmic) family of transporter, was reported to be showing more resistance towards selenite in the growth medium but the reason for the resistance is unknown. TRAP transporters are the best-studied family of substrate-binding protein and in our previous study it was confirmed that the gene takP in R. sphaeroides is down-regulated by a small non-coding RNA SorY, providing more resistance to the bacterium against the oxidative stress. By comparative growth analysis and sensitivity assays in the presence of 2 mM selenite, it was observed that the SorY knockout strain is more sensitive to selenite while overexpression of the sRNA conferred more resistance to the bacterium like the takP mutant strain. TakP is involved in the import of malate into the cell, which under oxidative stress needs to be down-regulated to limit malate flux into the cell. Limited malate flux leads to metabolic rearrangements in the cell to avoid excessive generation of prooxidant NADH and facilitate constant generation of antioxidant NADPH. In the presence and absence of selenite, a drastic increase in the NADPH and decrease in the NADH levels are reported respectively. Accumulation of metallic selenium in the cytoplasm was detected via atomic absorption spectrophotometer and our analysis clearly demonstrated the presence of more selenium in the electron micrographs of the SorY knockout strain compared to the takP mutant grown under dark semi-aerobic growth conditions in the presence of selenite. Hence based on our analysis, it is confirmed that lack of TakP transporter led to reduced selenite influx into the cytoplasm, relieving cells with limited generation of ROS, eventually exhibiting more resistance against selenite-induced oxidative stress.


Assuntos
Proteínas de Bactérias , Estresse Oxidativo , Rhodobacter sphaeroides , Ácido Selenioso , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , NAD , NADP , Estresse Oxidativo/genética , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Ácido Selenioso/metabolismo , Ácido Selenioso/toxicidade , Selênio/toxicidade
9.
Magn Reson Imaging ; 70: 115-125, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360531

RESUMO

GRASP (Golden-Angle Radial Sparse Parallel MRI) is a data acquisition and reconstruction technique that combines parallel imaging and golden-angle radial sampling. The continuously acquired free breathing Dynamic Contrast Enhanced (DCE) golden-angle radial MRI data of liver and abdomen has artifacts due to respiratory motion, resulting in low vessel-tissue contrast that makes GRASP reconstructed images less suitable for diagnosis. In this paper, DCE golden-angle radial MRI data of abdomen and liver perfusion is sorted into different motion states using the self-gating property of radial acquisition and then reconstructed using GRASP. Three methods of amplitude-based data binning namely uniform binning, adaptive binning and optimal binning are applied on the DCE golden-angle radial data to extract different motion states and a comparison is performed with the conventional GRASP reconstruction. Also, a comparison among the amplitude-based data binning techniques is performed and benefits of each of these binning techniques are discussed from a clinical perspective. The image quality assessment in terms of hepatic vessel clarity, liver edge sharpness, contrast enhancement clarity and streaking artifacts is performed by a certified radiologist. The results show that DCE golden-angle radial trajectories benefit from all the three types of amplitude-based data binning methods providing improved reconstruction results. The choice of binning technique depends upon the clinical application e.g. uniform and adaptive binning are helpful for a detailed analysis of lesion characteristic and contrast enhancement in different motion states while optimal binning can be used when clinical analysis requires a single image per contrast enhancement phase with no motion blurring artifacts.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Movimento , Respiração , Abdome/irrigação sanguínea , Abdome/diagnóstico por imagem , Artefatos , Feminino , Humanos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Masculino
10.
Microorganisms ; 7(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717929

RESUMO

Biodiesel, or fatty acid ethyl ester (FAEE), is an environmentally safe, next-generation biofuel. Conventionally, FAEE is produced by the conversion of oil/fats, obtained from plants, animals, and microorganisms, by transesterification. Recently, metabolic engineering of bacteria for ready-to-use biodiesel was developed. In Escherichia coli, it is produced by fatty acyl-carrier proteins and ethanol, with the help of thioesterase (TesB) and wax synthase (WS) enzymes. One of the foremost barriers in microbial FAEE production is the feedback inhibition of the fatty acid (FA) operon (fabHDG). Here, we studied the effect of biodiesel biosynthesis in E. coli with an engineered fabHDG operon. With a basic FAEE producing BD1 strain harboring tes and ws genes, biodiesel of 32 mg/L were produced. Optimal FAEE biosynthesis was achieved in the BD2 strain that carries an overexpressed operon (fabH, fabD, and fabG genes) and achieved up to 1291 mg/L of biodiesel, a 40-fold rise compared to the BD1 strain. The composition of FAEE obtained from the BD2 strain was 65% (C10:C2, decanoic acid ethyl ester) and 35% (C12:C2, dodecanoic acid ethyl ester). Our findings indicate that overexpression of the native FA operon, along with FAEE biosynthesis enzymes, improved biodiesel biosynthesis in E. coli.

11.
Comput Biol Med ; 109: 53-61, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31035071

RESUMO

Magnetic Resonance Imaging (MRI) is widely used in medical diagnostics and image reconstruction is a vital part of MRI systems. In Parallel MRI (pMRI), imaging process is accelerated by acquiring less data (undersampled) using multiple receiver coils and offline reconstruction algorithms are applied to reconstruct the fully sampled image. In this research, an Application Specific Integrated Circuits (ASIC) model of SENSE (a pMRI algorithm) is presented which reconstructs the image from the undersampled data right on the data acquisition module of the scanner. The proposed ASIC HDL architecture is compared with SENSE reconstruction model implemented on FPGAs, Multi-core CPU and Graphics Processing Units. The proposed architecture is validated using simulated brain data with 8-channel receiver coils and a human cardiac dataset with 20-channel receiver coils. The quality of the reconstructed images is analyzed using Artifact Power (0.0098), Peak Signal-to-Noise Ratio (53.4) and Structured Similarity Index (0.871) which validate the quality of the reconstructed images using the proposed design. The results show that the proposed ASIC HDL SENSE reconstruction model is ∼8000 times faster as compared to the multi-core CPU reconstruction, ∼700 times faster than the GPU implementation and ∼16 times faster as compared to the FPGA reconstruction model. The proposed architecture is suitable for image reconstruction right on the data acquisition system of the scanner and will open new ways for faster image reconstruction on portable MRI scanners.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Teóricos , Humanos
12.
Magn Reson Imaging ; 44: 82-91, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28855113

RESUMO

Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10-2) and comparable artefact power (<9×10-4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
13.
Water Res ; 112: 29-37, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129553

RESUMO

Over the last few decades, significant efforts have concentrated on mitigating biofouling in reverse osmosis (RO) systems, with a focus on non-toxic and sustainable strategies. Here, we explored the potential of applying quorum quenching (QQ) bacteria to control biofouling in a laboratory-scale RO system. For these experiments, Pantoea stewartii was used as a model biofilm forming organism because it was previously shown to be a relevant wastewater isolate that also forms biofilms in a quorum sensing (QS) dependent fashion. A recombinant Escherichia coli strain, which can produce a QQ enzyme, was first tested in batch biofilm assays and significantly reduced biofilm formation by P. stewartii. Subsequently, RO membranes were fouled with P. stewartii and the QQ bacterium was introduced into the RO system using two different strategies, direct injection and immobilization within a cartridge microfilter. When the QQ bacterial cells were directly injected into the system, N-acylhomoserine lactone signals were degraded, resulting in the reduction of biofouling. Similarly, the QQ bacteria controlled biofouling when immobilized within a microfilter placed downstream of the RO module to remove QS signals circulating in the system. These results demonstrate the proof-of-principle that QQ can be applied to control biofouling of RO membranes and may be applicable for use in full-scale plants.


Assuntos
Incrustação Biológica , Percepção de Quorum , Bactérias , Biofilmes , Membranas Artificiais , Osmose
14.
Environ Monit Assess ; 188(4): 206, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26940329

RESUMO

Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Monitoramento Ambiental , Política Ambiental , Poluição Ambiental/estatística & dados numéricos , Humanos , Plantas
15.
PLoS One ; 10(8): e0135875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26280918

RESUMO

A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.


Assuntos
Encéfalo/patologia , Sistemas Inteligentes/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Inteligência , Análise dos Mínimos Quadrados , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal/métodos , Sensibilidade e Especificidade , Software , Máquina de Vetores de Suporte
16.
J Biotechnol ; 161(3): 190-7, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22796090

RESUMO

Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.


Assuntos
Acil-Butirolactonas/farmacologia , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Percepção de Quorum/efeitos dos fármacos , Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/metabolismo , Reatores Biológicos/microbiologia , Pressão , Reprodutibilidade dos Testes , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA