Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Clin Med ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592057

RESUMO

(1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.

2.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37976469

RESUMO

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/genética , Diferenciação Celular , Metilação de DNA , Progressão da Doença , Epigênese Genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
3.
Laryngoscope ; 134(1): 374-381, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565709

RESUMO

OBJECTIVES: To aim of the study was to characterize the molecular profile and functional phenotype of idiopathic subglottic stenosis (iSGS)-scar epithelium. METHODS: Human tracheal biopsies from iSGS scar (n = 6) and matched non-scar (n = 6) regions were analyzed using single-cell RNA sequencing (scRNA-seq). Separate specimens were used for epithelial cell expansion in vitro to assess average growth rate and functional capabilities using transepithelial-electrical resistance (TEER), fluorescein isothiocyanate-dextran flux permeability assay, ciliary coverage, and cilia beating frequency (CBF). Finally, epithelial tight junction protein expression of cultured cells was quantified using immunoblot assay (n = 4) and immunofluorescence (n = 6). RESULTS: scRNA-seq analysis revealed a decrease in goblet, ciliated, and basal epithelial cells in the scar iSGS cohort. Furthermore, mRNA expression of proteins E-cadherin, claudin-3, claudin-10, occludin, TJP1, and TJP2 was also reduced (p < 0.001) in scar epithelium. Functional assays demonstrated a decrease in TEER (paired 95% confidence interval [CI], 195.68-890.83 Ω × cm2 , p < 0.05), an increase in permeability (paired 95% CI, -6116.00 to -1401.99 RFU, p < 0.05), and reduced epithelial coverage (paired 95% CI, 0.1814-1.766, fold change p < 0.05) in iSGS-scar epithelium relative to normal controls. No difference in growth rate (p < 0.05) or CBF was found (paired 95% CI, -2.118 to 3.820 Hz, p > 0.05). Immunoblot assay (paired 95% CI, 0.0367-0.605, p < 0.05) and immunofluorescence (paired 95% CI, 13.748-59.191 mean grey value, p < 0.05) revealed E-cadherin reduction in iSGS-scar epithelium. CONCLUSION: iSGS-scar epithelium has a dysfunctional barrier and reduced structural protein expression. These results are consistent with dysfunctional epithelium seen in other airway pathology. Further studies are warranted to delineate the causality of epithelial dysfunction on the downstream fibroinflammatory cascade in iSGS. LEVEL OF EVIDENCE: NA Laryngoscope, 134:374-381, 2024.


Assuntos
Caderinas , Cicatriz , Humanos , Caderinas/metabolismo , Cicatriz/metabolismo , Constrição Patológica , Epitélio/metabolismo , Células Epiteliais/metabolismo , Permeabilidade
4.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961411

RESUMO

COPD causes significant morbidity and mortality worldwide. Epithelial damage is fundamental to disease pathogenesis, although the mechanisms driving disease remain undefined. Published evidence from a COPD cohort (SPIROMICS) and confirmed in a second cohort (COPDgene) demonstrate a polymorphism in Fucosyltransferese-2 (FUT2) is a trans-pQTL for E-cadherin, which is critical in COPD pathogenesis. We found by MALDI-TOF analysis that FUT2 increased terminal fucosylation of E-cadherin. Using atomic force microscopy, we found that FUT2-dependent fucosylation enhanced E-cadherin-E-cadherin bond strength, mediating the improvement in monolayer integrity. Tracheal epithelial cells from Fut2-/- mice have reduced epithelial integrity, which is recovered with reconstitution of Fut2. Overexpression of FUT2 in COPD derived epithelia rescues barrier function. Fut2-/- mice show increased susceptibility in an elastase model of disease developing both emphysema and fibrosis. We propose this is due to the role of FUT2 in proliferation and cell differentiation. Overexpression of FUT2 significantly increased proliferation. Loss of Fut2 results in accumulation of Spc+ cells suggesting a failure of alveolar type 2 cells to undergo transdifferentiation to alveolar type 1. Using a combination of population data, genetically manipulated mouse models, and patient-derived cells, we present a novel mechanism by which post-translational modifications modulate tissue pathology and serve as a proof of concept for the development of a disease-modifying target in COPD.

5.
Adv Biol (Weinh) ; : e2300165, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840439

RESUMO

The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.

6.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L467-L476, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37605829

RESUMO

The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Masculino , Animais , Feminino , Pulmão/metabolismo , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
7.
mBio ; 14(4): e0082023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37504520

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SCV2), which has resulted in higher morbidity and mortality rate than other respiratory viral infections, such as Influenza A virus (IAV) infection. Investigating the molecular mechanisms of SCV2-host infection vs IAV is vital in exploring antiviral drug targets against SCV2. We assessed differential gene expression in human nasal cells upon SCV2 or IAV infection using RNA sequencing. Compared to IAV, we observed alterations in both metabolic and cytoskeletal pathways suggestive of epithelial remodeling in the SCV2-infected cells, reminiscent of pathways activated as a response to chronic injury. We found that spike protein interaction with the epithelium was sufficient to instigate these epithelial responses using a SCV2 spike pseudovirus. Specifically, we found downregulation of the mitochondrial markers SIRT3 and TOMM22. Moreover, SCV2 spike infection increased extracellular acidification and decreased oxygen consumption rate in the epithelium. In addition, we observed cytoskeletal rearrangements with a reduction in the actin-severing protein cofilin-1 and an increase in polymerized actin, indicating epithelial cytoskeletal rearrangements. This study revealed distinct epithelial responses to SCV2 infection, with early mitochondrial dysfunction in the host cells and evidence of cytoskeletal remodeling that could contribute to the worsened outcome in COVID-19 patients compared to IAV patients. These changes in cell structure and energetics could contribute to cellular resilience early during infection, allowing for prolonged cell survival and potentially paving the way for more chronic symptoms. IMPORTANCE COVID-19 has caused a global pandemic affecting millions of people worldwide, resulting in a higher mortality rate and concerns of more persistent symptoms compared to influenza A. To study this, we compare lung epithelial responses to both viruses. Interestingly, we found that in response to SARS-CoV-2 infection, the cellular energetics changed and there were cell structural rearrangements. These changes in cell structure could lead to prolonged epithelial cell survival, even in the face of not working well, potentially contributing to the development of chronic symptoms. In summary, these findings represent strategies utilized by the cell to survive the infection but result in a fundamental shift in the epithelial phenotype, with potential long-term consequences, which could set the stage for the development of chronic lung disease or long COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Actinas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Síndrome de COVID-19 Pós-Aguda , Células Epiteliais/metabolismo , Mitocôndrias
8.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409022

RESUMO

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Assuntos
Tecido Adiposo Marrom , Troca Gasosa Pulmonar , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Pulmão , Consumo de Oxigênio , Temperatura Baixa
9.
Commun Biol ; 5(1): 1149, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309587

RESUMO

Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target.


Assuntos
Caderinas , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
10.
PLoS One ; 17(10): e0266310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223404

RESUMO

Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-ß, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.


Assuntos
Inibidores de Histona Desacetilases , Doença Pulmonar Obstrutiva Crônica , Citocinas/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Mucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Am J Prev Med ; 62(6): 872-877, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597566

RESUMO

INTRODUCTION: Both E-cigarette use and the prevalence of prediabetes have risen dramatically in the past decade. It is crucial to understand whether E-cigarette use is associated with the risk of prediabetes. METHODS: Participants who completed the prediabetes and E-cigarette modules of the Behavioral Risk Factor Surveillance System survey (2016-2018) were included in this study. E-cigarette use information was collected by asking: Have you ever used an e-cigarette or other electronic "vaping" product, even just one time, in your entire life? We defined sole E-cigarette users as current E-cigarette users who are never combustible-cigarette users, and dual users were defined as both current E-cigarette and combustible-cigarette users. Participants with prediabetes were identified by asking: Ever been told by a doctor or other health professional that you have prediabetes or borderline diabetes? Multivariable logistic regression was used to determine the association between E-cigarette use and prediabetes. RESULTS: Among the 600,046 respondents, 28.6% of respondents were aged <35 years. The prevalence of prediabetes among current E-cigarette, sole E-cigarette users, and dual users was 9.0% (95% CI=8.6, 9.4), 5.9% (95% CI=5.3, 6.5), and 10.2% (95% CI=9.8, 10.7), respectively. In the fully adjusted model, the ORs for prediabetes were 1.22 (95% CI=1.10, 1.37) for current E-cigarette users and 1.12 (95% CI=1.05, 1.19) for former E-cigarette users compared with that of never E-cigarette users. The ORs for prediabetes were 1.54 (95% CI=1.17, 2.04) for sole E-cigarette users and 1.14 (95% CI=0.97, 1.34) for dual users. CONCLUSIONS: In this representative sample of U.S. adults, E-cigarette use was associated with greater odds of prediabetes. The results were consistent in sole E-cigarette users.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Estado Pré-Diabético , Vaping , Adulto , Sistema de Vigilância de Fator de Risco Comportamental , Estudos Transversais , Humanos , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/etiologia , Vaping/efeitos adversos , Vaping/epidemiologia
12.
Eur Respir Rev ; 31(163)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35321933

RESUMO

Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD.


Assuntos
Poluentes Atmosféricos , Asma , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Poluentes Atmosféricos/efeitos adversos , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
13.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35118497

RESUMO

The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas , Doença Pulmonar Obstrutiva Crônica , Actinas/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos
14.
Laryngoscope ; 132(11): 2194-2201, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35141889

RESUMO

OBJECTIVE: Characterize and quantify epithelium in multiple etiologies of laryngotracheal stenosis (LTS) to better understand its role in pathogenesis. STUDY DESIGN: Controlled in vitro cohort study. METHODS: Endoscopic brush biopsy samples of both normal (non-scar) and scar were obtained in four patients with idiopathic subglottic stenosis (iSGS) and four patients with iatrogenic LTS (iLTS). mRNA expression of basal, ciliary, and secretory cell markers were evaluated using quantitative PCR. Cricotracheal resection tissue samples (n = 5 per group) were also collected, analyzed using quantitative immunohistochemistry, and compared with rapid autopsy tracheal samples. RESULTS: Both iSGS and iLTS-scar epithelium had reduced epithelial thickness compared with non-scar control epithelium (P = .0009 and P = .0011, respectively). Basal cell gene and protein expression for cytokeratin 14 was increased in iSGS-scar epithelium compared with iLTS or controls. Immunohistochemical expression of ciliary tubulin alpha 1, but not gene expression, was reduced in both iSGS and iLTS-scar epithelium compared with controls (P = .0184 and P = .0125, respectively). Both iSGS and iLTS-scar had reductions in Mucin 5AC gene expression (P = .0007 and P = .0035, respectively), an epithelial goblet cell marker, with reductions in secretory cells histologically (P < .0001). CONCLUSIONS: Compared with non-scar epithelium, the epithelium within iSGS and iLTS is morphologically abnormal. Although both iSGS and iLTS have reduced epithelial thickness, ciliary cells, and secretory cells, only iSGS had significant increases in pathological basal cell expression. These data suggest that the epithelium in iSGS and iLTS play a common role in the pathogenesis of fibrosis in these two etiologies of laryngotracheal stenosis. SETTING: Tertiary referral center (2017-2020). LEVEL OF EVIDENCE: NA Laryngoscope, 132:2194-2201, 2022.


Assuntos
Laringoestenose , Estenose Traqueal , Cicatriz/patologia , Estudos de Coortes , Constrição Patológica/complicações , Humanos , Queratina-14 , Laringoestenose/cirurgia , Mucina-5AC , RNA Mensageiro , Estenose Traqueal/patologia , Tubulina (Proteína)
15.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1072-L1088, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612064

RESUMO

Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.


Assuntos
Células Epiteliais Alveolares/fisiologia , Modelos Biológicos , Mucosa Respiratória/fisiologia , Doenças Respiratórias/fisiopatologia , Células Epiteliais Alveolares/citologia , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Dispositivos Lab-On-A-Chip , Mucosa Respiratória/citologia , Engenharia Tecidual
17.
J Cell Sci ; 134(4)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33526710

RESUMO

Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.


Assuntos
Dictyostelium , Doença Pulmonar Obstrutiva Crônica , Dictyostelium/genética , Células Epiteliais/metabolismo , Humanos , Pulmão , Mitocôndrias , Translocases Mitocondriais de ADP e ATP/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
18.
Laryngoscope ; 131(4): 713-719, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628788

RESUMO

OBJECTIVES/HYPOTHESIS: Oxidative stress has been postulated to play an important role in chronic rhinosinusitis. Nrf2 is a transcription factor that is involved in the regulation of multiple antioxidant genes, and its function has been previously shown to be important in sinonasal inflammation. Although the sinonasal implications of whole body Nrf2-/- has been reported, the function of sinonasal epithelial expression of Nrf2 has not been studied. The primary aim of this study was to generate a mouse model that is genetically deficient in epithelial-specific Nrf2 and to understand its role in regulating sinonasal inflammation. STUDY DESIGN: Basic science. METHODS: An epithelial-specific Nrf2 knockout mouse was generated by crossing Krt5-cre(K5) with Nrf2flox/flox . A papain-induced model of rhinosinusitis was performed in the resulting K5 Nrf2-/- mouse. Immunohistochemistry was performed to quantify goblet cell hyperplasia. Mucosal cellular infiltrates were quantified using flow cytometry, and tissue cytokines were measured using an enzyme-linked immunosorbent assay. Lastly, the cellular source of type 2 cytokines was determined using intracellular cytokine staining. RESULTS: Papain-sensitized mice lacking epithelial-specific Nrf2 demonstrate increased goblet cell hyperplasia, significant tissue eosinophilia, and statistically significant increase in mucosal IL-13 when compared to Nrf2 wild-type mice. Lastly, mucosal T cells were identified as the cellular source of IL-13. CONCLUSIONS: We demonstrate enhanced severity of eosinophilic sinonasal inflammation from disruption of the epithelial-specific Nrf2 pathway. The responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to eosinophilic inflammation and may have potential as a therapeutic target for chronic rhinosinusitis. LEVEL OF EVIDENCE: NA Laryngoscope, 131:713-719, 2021.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Inflamação , Camundongos , Camundongos Knockout , Estresse Oxidativo , Papaína
19.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L1-L11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174444

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar tissue (in emphysema) and airway remodeling (leading to chronic bronchitis), which cause difficulties in breathing. It is a growing public health concern with few therapeutic options that can reverse disease progression or mortality. This is in part because current treatments mainly focus on ameliorating symptoms induced by inflammatory pathways as opposed to curing disease. Hence, emerging research focused on upstream pathways are likely to be beneficial in the development of efficient therapeutics to address the root causes of disease. Some of these pathways include mitochondrial function, cytoskeletal structure and maintenance, and airway hydration, which are all affected by toxins that contribute to COPD. Because of the complexity of COPD and unknown targets for disease onset, simpler model organisms have proved to be useful tools in identifying disease-relevant pathways and targets. This review summarizes COPD pathology, current treatments, and therapeutic discovery research, with a focus on the aforementioned pathways that can advance the therapeutic landscape of COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/terapia , Transdução de Sinais , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo
20.
BMC Pulm Med ; 20(1): 216, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787821

RESUMO

BACKGROUND: Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS: Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS: The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.


Assuntos
Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Fumaça/efeitos adversos , Cachimbos de Água , Adulto , Aerossóis , Cílios/efeitos dos fármacos , Feminino , Humanos , Pulmão , Masculino , Pessoa de Meia-Idade , Nicotina/farmacologia , Técnicas de Cultura de Órgãos , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA