Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(816): eadh3449, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113335

RESUMO

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Receptores de Interleucina-1 , Animais , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Peixe-Zebra/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Dano ao DNA , Apoptose
2.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798275

RESUMO

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.

3.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256011

RESUMO

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Assuntos
Apoptose/fisiologia , Reparo do DNA/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Células HeLa , Humanos , Ubiquitinação , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33972797

RESUMO

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Front Oncol ; 9: 1174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799178

RESUMO

Antitumor immunity has emerged as a favorable byproduct of radiation therapy (RT), whereby tumor-associated antigens released from irradiated cells unleash innate and adaptive attacks on tumors located both within and outside the radiation field. RT-induced immune responses further provide actionable targets for overcoming tumor resistance to RT (R-RT); immunotherapy (IT) with checkpoint inhibitors or Toll-like receptor (TLR) agonists can markedly improve, if not synergize with, RT in preclinical models, and several of these drugs are currently investigated as radiosensitizers in patients. In an unbiased chemical-genetic screen in a zebrafish model of tumor R-RT, we unexpectedly found that Interleukin 1 Receptor-Associated Kinase 1 (IRAK1), a core effector of TLR-mediated innate immunity, also functions in live fish and human cancer models to counter RT-induced cell death mediated by the PIDDosome complex (PIDD-RAIDD-caspase-2). IRAK1 acting both as a driver of intrinsic tumor R-RT and as an effector of RT-induced antitumor immunity would, at first glance, pose obvious therapeutic conundrums. IRAK1 inhibitors would be expected to sensitize the irradiated tumor to RT but simultaneously thwart RT-induced antitumor immunity as initiated by stromal dendritic cells. Conversely, TLR agonist-based immunotherapy would be expected to intensify RT-induced antitumor immunity but at the expense of fueling IRAK1-mediated cell survival in the irradiated tumor. We discuss how IRAK1's differential reliance on catalytic activity in the radiation vs. TLR responses might help overcome these hurdles, as well as the crucial importance of developing IRAK1 inhibitors that lack activity against IRAK4, the kinase activity of which is essential for IRAK1 activation in both pathways.

6.
Cells ; 8(9)2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500247

RESUMO

Mitosis is controlled by a complex series of signaling pathways but mitotic control following DNA damage remains poorly understood. Effective DNA damage sensing and repair is integral to survival but is largely thought to occur primarily in interphase and be repressed during mitosis due to the risk of telomere fusion. There is, however, increasing evidence to suggest tight control of mitotic progression in the incidence of DNA damage, whether induced in mitotic cells or having progressed from failed interphase checkpoints. Here we will discuss what is known to date about signaling pathways controlling mitotic progression and resulting cell fate in the incidence of mitotic DNA damage.


Assuntos
Quebras de DNA , Reparo do DNA , Mitose/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , DNA/genética , DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitose/genética , Transdução de Sinais
7.
Nat Cell Biol ; 21(2): 203-213, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664786

RESUMO

Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR-IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/radioterapia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/genética , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias/genética , Neoplasias/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53/genética , Peixe-Zebra
8.
Mol Cell Oncol ; 4(5): e1348325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057309

RESUMO

Despite being frequently mutated or deregulated in acute myeloid leukemia (AML) and many other cancers, the mechanisms by which nucleophosmin (NPM1) regulates oncogenesis remain elusive. We found that NPM1 plays a direct and conserved role in DNA damage-induced assembly of the PIDDosome complex, the activating platform for caspase-2. This function is carried in the nucleolus and is essential for caspase-2-mediated apoptosis in response to a variety of DNA injuries.

9.
Cell Cycle ; 16(17): 1562-1563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749201
10.
J Cell Biol ; 216(6): 1795-1810, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28432080

RESUMO

The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function.


Assuntos
Apoptose , Caspase 2/metabolismo , Nucléolo Celular/enzimologia , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Cisteína Endopeptidases/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Ativação Enzimática , Genótipo , Células HEK293 , Células HeLa , Humanos , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Vídeo , Complexos Multiproteicos , Proteínas Nucleares/genética , Nucleofosmina , Fenótipo , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Transfecção , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Mol Cell Oncol ; 3(3): e1059921, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27314076

RESUMO

In contrast to the apoptosome and death-inducing signaling complex, the PIDDosome remains an orphan caspase activation platform unassigned to a specific apoptotic pathway. We found that DNA damage-induced PIDDosome formation is blocked by the mitotic checkpoint factor BUBR1 (budding uninhibited by benzimidazole-related 1), via a direct interaction that disrupts the PIDDosome core scaffold. This inhibition occurs at the kinetochore, thus physically connecting the mitotic and apoptotic machineries.

12.
Mol Cell ; 58(5): 767-79, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25936804

RESUMO

The PIDDosome-PIDD-RAIDD-caspase-2 complex-is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor BubR1 as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, "primed" PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Caspase 2/metabolismo , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Células HCT116 , Células HeLa , Humanos , Cinetocoros/enzimologia , Proteínas Mad2/metabolismo , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
13.
Mol Cell ; 47(5): 681-93, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22854598

RESUMO

Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Morte Celular , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Fosforilação
14.
Mol Cancer ; 8: 24, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19371427

RESUMO

BACKGROUND: DNA repair deficient tumor cells have been shown to accumulate high levels of DNA damage. Consequently, these cells become hyper-dependent on DNA damage response pathways, including the CHK1-kinase-mediated response. These observations suggest that DNA repair deficient tumors should exhibit increased sensitivity to CHK1 inhibition. Here we offer experimental evidence in support of this hypothesis. RESULTS: Using isogenic pairs of cell lines differing only in the Fanconi Anemia (FA) DNA repair pathway, we showed that FA deficient cell lines were hypersensitive to CHK1 silencing by independent siRNAs as well as CHK1 pharmacologic inhibition by Gö6976 and UCN-01. In parallel, an siRNA screen designed to identify gene silencings synthetically lethal with CHK1 inhibition identified genes required for FA pathway function. To confirm these findings in vivo, we demonstrated that whole zebrafish embryos, depleted for FANCD2 by a morpholino approach, were hypersensitive to Gö6976. Silencing of FA genes led to hyper-activation of CHK1 and vice versa. Furthermore, inactivation of CHK1 in FA deficient cell lines caused increased accumulation of DNA strand and chromosomal breakages. These results suggest that the functions subserved by CHK1 and the FA pathway mutually compensate in maintaining genome integrity. As CHK1 inhibition has been under clinical trial in combination with cisplatin, we showed that the FA specific tumoricidal effect of CHK1 inhibition and cisplatin was synergistic. CONCLUSION: Taken together, these results suggest CHK1 inhibition as a strategy for targeting FA deficient tumors.


Assuntos
Reparo do DNA/fisiologia , Anemia de Fanconi/genética , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Animais , Carbazóis/farmacologia , Morte Celular , Quinase 1 do Ponto de Checagem , Cisplatino/farmacologia , Dano ao DNA , Embrião não Mamífero/metabolismo , Anemia de Fanconi/metabolismo , Inativação Gênica , Células HeLa , Humanos , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Peixe-Zebra/metabolismo
15.
Cell ; 133(5): 864-77, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510930

RESUMO

Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore gamma-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after gamma-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.


Assuntos
Apoptose , Caspase 2/metabolismo , Dano ao DNA , Proteínas Quinases/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Raios gama , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Neurosci ; 28(9): 2110-8, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305245

RESUMO

Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.


Assuntos
Células Ciliadas Auditivas/fisiologia , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Estimulação Acústica/métodos , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Larva , Microscopia Eletrônica de Transmissão/métodos , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Estimulação Física/métodos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Glutamato/genética , Peixe-Zebra
17.
BMC Genomics ; 8: 11, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17212827

RESUMO

BACKGROUND: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. RESULTS: We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. CONCLUSION: By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.


Assuntos
Mapeamento Cromossômico , Repetições de Microssatélites , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Feminino , Genoma , Masculino , Mutagênese , Fenótipo
19.
Proc Natl Acad Sci U S A ; 102(35): 12572-7, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16116094

RESUMO

In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is absent from the genomes of higher vertebrates, however, and has not been localized in hair cells. Another candidate for the transduction channel, TRPA1, apparently is required for transduction in mammalian and nonmammalian vertebrates. This discrepancy raises the question of the relative contribution of TRPN1 and TRPA1 to transduction in nonmammalian vertebrates. To address this question, we cloned the TRPN1 ortholog from the amphibian Xenopus laevis, generated an antibody against the protein, and determined the protein's cellular and subcellular localization. We found that TRPN1 is prominently located in lateral-line hair cells, auditory hair cells, and ciliated epidermal cells of developing Xenopus embryos. In ciliated epidermal cells TRPN1 staining was enriched at the tips and bases of the cilia. In saccular hair cells, TRPN1 was located prominently in the kinocilial bulb, a component of the mechanosensory hair bundles. Moreover, we observed redistribution of TRPN1 upon treatment of hair cells with calcium chelators, which disrupts the transduction apparatus. This result suggests that although TRPN1 is unlikely to be the transduction channel of stereocilia, it plays an essential role, functionally related to transduction, in the kinocilium.


Assuntos
Cílios/metabolismo , Canais Iônicos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , DNA/genética , Células Epiteliais/metabolismo , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Imuno-Histoquímica , Canais Iônicos/genética , Mecanotransdução Celular , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética
20.
Dev Biol ; 272(2): 328-38, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15282151

RESUMO

Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.


Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Cadeias Pesadas de Miosina/genética , Peixe-Zebra/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Regulação da Expressão Gênica , Células Ciliadas Auditivas Internas/fisiologia , Dados de Sequência Molecular , Mutação , Cadeias Pesadas de Miosina/metabolismo , Filogenia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA