Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375686

RESUMO

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Assuntos
Ecossistema , Pradaria , Plantas , Clima , Processos Climáticos , Biodiversidade
2.
Sci Total Environ ; 835: 155455, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35472345

RESUMO

Agricultural land use and management practices affect the global climate due to greenhouse gas (GHG) fluxes and changes in land surface properties. Increased albedo has the potential to counteract the radiative forcing and warming effect of emitted GHGs. Thus considering albedo could be important to evaluate and improve agricultural systems in light of climate change, but the albedo of individual practices is usually not known. This study quantified the albedo of individual crops under regional conditions, and evaluated the importance of albedo change for the climate impact of current crop production using life cycle assessment (LCA). Seven major crops in southern Sweden were assessed relative to a land reference without cultivation, represented by semi-natural grassland. Crop-specific albedo data were obtained from a MODIS product (MCD43A1 v6), by combining its spatial response pattern with geodata on agricultural land use 2011-2020. Fluxes of GHGs were estimated using regional data and models, including production of inputs, field operations, and soil nitrogen and carbon balances. Ten-year mean albedo was 6-11% higher under the different crops than under the reference. Crop-specific albedo varied between years due to weather fluctuations, but differences between crops were largely consistent. Increased albedo countered the GHG impact from production of inputs and field operations by 17-47% measured in GWP100, and the total climate impact was warming. Using a time-dependent metric, all crops had a net cooling impact on global mean surface temperature on shorter timescales due to albedo (3-12 years under different crops), but a net warming impact on longer timescales due to GHG emissions. The methods and data presented in this study could support increasingly comprehensive assessments of agricultural systems. Further research is needed to integrate climatic effects of land use on different spatial and temporal scales, and direct and indirect consequences from a systems perspective.


Assuntos
Agricultura , Gases de Efeito Estufa , Agricultura/métodos , Produção Agrícola , Produtos Agrícolas , Gases de Efeito Estufa/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA