Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614605

RESUMO

The introduction of the hydrogen economy, despite its obvious technological problems, creates a need for a significant number of niche-focused solutions, such as small-sized (10-100 W) fuel cells able to run on hydrogen of lesser purity than what is considered a standard in the case of PEMFCs. One of the solutions can be derived from the fact that an increase in the operational temperature of a cell significantly decreases its susceptibility to catalyst poisoning. Electrolytes suitable for the so-called medium temperature operational range of 120-400 °C, hence developed, are neither commercialized nor standardized. Among them, phosphate silicate protonically conductive glasses were found not only to reveal interestingly high levels of operational parameters, but also, to exhibit superior chemical and electrochemical stability over their polymeric counterparts. On the other hand, their mechanical properties, including cracking fragility, still need elaboration. Initial studies of the composite phosphate silicate glasses with uranyl-based protonic conductors, presented here, proved their value both in terms of application in fuel cell systems, and in terms of understanding the mechanism governing the charge transport mechanism in these and similar systems. It was found that whereas systems containing 10-20 wt% of the crystalline additive suffer from significant instability, materials containing 45-80 wt% (with an optimum at 60%) should be examined more thoughtfully. Moreover, the uranyl hydrogen phosphate was found to surpass its arsenate counterpart as an interesting self-healing behavior of the phase structure of the derived composite was proved.

2.
Polymers (Basel) ; 13(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799483

RESUMO

Whereas the major potential of the development of lithium-based cells is commonly attributed to the use of solid polymer electrolytes (SPE) to replace liquid ones, the possibilities of the improvement of the applicability of the fuel cell is often attributed to the novel electrolytic materials belonging to various structural families. In both cases, the transport properties of the electrolytes significantly affect the operational parameters of the galvanic and fuel cells incorporating them. Amongst them, the transference number (TN) of the electrochemically active species (usually cations) is, on the one hand, one of the most significant descriptors of the resulting cell operational efficiency while on the other, despite many years of investigation, it remains the worst definable and determinable material parameter. The paper delivers not only an extensive review of the development of the TN determination methodology but as well tries to show the physicochemical nature of the discrepancies observed between the values determined using various approaches for the same systems of interest. The provided critical review is supported by some original experimental data gathered for composite polymeric systems incorporating both inorganic and organic dispersed phases. It as well explains the physical sense of the negative transference number values resulting from some more elaborated approaches for highly associated systems.

3.
Materials (Basel) ; 13(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640595

RESUMO

This paper is focused on the determination of the physicochemical properties of a composite inorganic-organic modified membrane. The electrical conductivity of a family of glassy protonic electrolytes defined by the general formula (P2O5)x(SiO2)y, where x/y is 3/7 are studied by Alternating Current electrochemical impedance spectroscopy (AC EIS) method. The reference glass was doped with polymeric additives-poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA), and additionally with a titanium-oxide-based filler. Special attention was paid to determination of the transport properties of the materials thus modified in relation to the charge transfer phenomena occurring within them. The electrical conductivities of the 'dry' material ranged from 10-4 to 10-9 S/cm, whereas for 'wet' samples the values were ~10-3 S/cm. The additives also modified the pore space of the samples. The pore distribution and specific surface of the modified glassy systems exhibited variation with changes in electrolyte chemical composition. The mechanical properties of the samples were also examined. The Young's modulus and Poisson's ratio were determined by the continuous wave technique (CWT). Based on analysis of the dispersion of the dielectric losses, it was found that the composite samples exhibit mixed-type proton mobility with contributions related to both the bulk of the material and the surface of the pore space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA