Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 398(1-3): 26-33, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18440598

RESUMO

There is increasing concern about pharmaceuticals entering surface waters and the impacts these compounds may have on aquatic organisms. Many contaminants, including pharmaceuticals, are not completely removed by wastewater treatment. Discharge of effluent into surface waters results in chronic low-concentration exposure of aquatic organisms to these compounds, with unknown impacts. Exposure of virulent bacteria in wastewater to antibiotic residues may also induce resistance, which could threaten human health. The purpose of this study was to provide information on pharmaceutical threats to the environment. A preliminary risk assessment database for common pharmaceuticals was created and put into a web-accessible database named "Pharmaceuticals in the Environment, Information for Assessing Risk" (PEIAR) to help others evaluate potential risks of pharmaceutical contaminants in the environment. Information from PEIAR was used to prioritize compounds that may threaten the environment, with a focus on marine and estuarine environments. The pharmaceuticals were ranked using five different combinations of physical-chemical and toxicological data, which emphasized different risks. The results of the ranking methods differed in the compounds identified as high risk; however, drugs from the central nervous system, cardiovascular, and anti-infective classes were heavily represented within the top 100 drugs in all rankings. Anti-infectives may pose the greatest overall risk based upon our results using a combination of factors that measure environmental transport, fate, and aquatic toxicity. The dataset is also useful for highlighting information that is still needed to assuredly assess risk.


Assuntos
Bases de Dados Factuais , Poluentes Ambientais/toxicidade , Preparações Farmacêuticas , Medição de Risco , Animais , Bactérias/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Plantas/efeitos dos fármacos
2.
Sci Total Environ ; 389(1): 87-100, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17904201

RESUMO

Hundreds, if not thousands, of fish kills and kills of other aquatic organisms occur following storms in the US each year, but they are difficult to quantify, investigate, or manage due to the transient nature of major storms and the other priorities following them. Methods are needed to better understand the causes of these kills. The Pesticide Root Zone Model and the Exposure Analysis Modeling System were used to compare risk to resident biota in estuarine headwaters in two locations under various conditions. Contaminants were selected using a landuse-based preliminary risk assessment approach. Atrazine, fipronil, and imidacloprid were compared for potential impacts on important prey species, including copepods and grass shrimp, in Lake Bethel in Volusia County, Florida. Carbaryl, diquat dibromide, and fluoranthene were compared for potential impacts on salmon and other aquatic species in Johnson Creek, near Portland, Oregon. Predictions of contaminant concentrations in groundwater runoff, surface water, benthic sediments, and pelagic biota tissue were obtained based upon watershed characteristics, storm types, and contaminant chemistry and application. For all six contaminants, the simulated concentrations were highest following the 100-yr storms and lowest following the 2-yr storms. Aqueous concentrations ranged between 84 and 2100% higher in 100-yr compared to two-yr storms. Most atrazine and carbaryl concentrations were highest if applied one day before the storm while fipronil, imidacloprid, and diquat dibromide were highest if applied 16 days prior to the storm. Carbaryl and fluoranthene concentrations were highest in the forested segment of the watershed while diquat dibromide concentrations were highest in the agricultural segment. In Florida simulations, groundwater and surface water concentrations generally were highest for atrazine, followed by imidacloprid, and then fipronil. Atrazine poses the highest risk to algae and copepods due to its mobility and high allowable application rates. Fipronil and imidacloprid, though highly toxic, were not predicted to occur at high enough concentrations to pose a risk. In Oregon simulations, groundwater and surface water concentrations generally were highest for carbaryl, followed by fluoranthene, and then diquat dibromide. For salmonids, fluoranthene poses a higher risk than carbaryl, whereas it is unlikely that diquat dibromide will affect salmonids in this system. For crustaceans, carbaryl poses the greatest risk, followed by fluoranthene. Diquat dibromide was determined to pose little risk. These tests demonstrate the use of preliminary risk assessment, along with transport and fate modeling, to characterize risks to aquatic organisms without the need for in situ chemical measurements.


Assuntos
Praguicidas/análise , Chuva , Poluentes Químicos da Água/análise , Poluição da Água/análise , Animais , Simulação por Computador , Monitoramento Ambiental , Florida , Modelos Químicos , Oregon , Medição de Risco , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA