Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Nutr ; 19(1): 19, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232650

RESUMO

BACKGROUND: In a previous study, the 84-day administration of glycosaminoglycans (GAGs), with or without native collagen type II (NC), in an osteoarthritis (OA)-induced rabbit model slowed down OA progression, improved several micro- and macroscopic parameters and magnetic resonance imaging (MRI) biomarkers in cartilage, and increased hyaluronic acid levels in synovial fluid. To elucidate the potential underlying mechanisms, a transcriptomics approach was conducted using medial femoral condyle and trochlea samples. RESULTS: The administration of chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), and hyaluronic acid (HA), with (CGH-NC) or without (CGH) NC, strongly modulated several genes involved in chondrocyte extracellular matrix (ECM) remodeling and homeostasis when compared to non-treated rabbits (CTR group). Notably, both treatments shared the main mechanism of action, which was related to ECM modulation through the down-regulation of genes encoding proteolytic enzymes, such as ADAM metallopeptidase with thrombospondin type 1 motif, 9 (Adamts9), and the overexpression of genes with a relevant role in the synthesis of ECM components, such as aggrecan (Acan) in both CGH-NC and CGH groups, and fibronectin 1 (Fn1) and collagen type II, alpha 1 (Col2A1) in the CGH group. Furthermore, there was a significant modulation at the gene expression level of the mTOR signaling pathway, which is associated with the regulation of the synthesis of ECM proteolytic enzymes, only in CGH-NC-supplemented rabbits. This modulation could account for the better outcomes concerning the microscopic and macroscopic evaluations reported in these animals. CONCLUSIONS: In conclusion, the expression of key genes involved in chondrocyte ECM remodeling and homeostasis was significantly modulated in rabbits in response to both CGH and CGH-NC treatments, which would partly explain the mechanisms by which these therapies exert beneficial effects against OA.

2.
Cartilage ; 13(3): 19476035221118166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004407

RESUMO

OBJECTIVE: To evaluate pathological changes in cartilage and subchondral bone MRI biomarkers in a rabbit model of osteoarthritis (OA) and correlate these with histological variations. DESIGN: Transection of the anterior cruciate ligament was performed on the right knee of eighteen 12-week-old New Zealand white rabbits to induce OA. 3-Tesla MR images were obtained from 18 healthy control knees (left) and 18 knees with OA (right). Imaging biomarkers included volume, thickness, T1 and T2* cartilage parametric maps, and several subchondral bone features: bone volume to total volume ratio, trabecular thickness, trabecular spacing, trabecular number (TbN), 2D and 3D fractal dimensions, and quality of trabecular score (QTS). Microscopic analysis of the lateral femoral condyles was set as the ground truth. RESULTS: When healthy and osteoarthritic knees were compared, significant differences were seen in the T1 and T2* values of the femur and tibia cartilage and in the subchondral bone volume to total volume, TbN, and QTS of both the lateral and medial aspects of the femur and tibia. Histological findings revealed significant osteoarthritic changes between healthy and osteoarthritic knees in stain, structure, chondrocyte density, total score, and subchondral bone biomarker levels. A positive correlation was found between histological staining, structure, chondrocyte density, and total score variables in T1 and T2* cartilage biomarkers. A negative correlation was observed between histological subchondral bone variables and magnetic resonance D2D and QTS biomarkers. CONCLUSION: Quantification of several cartilage and subchondral bone imaging biomarkers in a rabbit model of OA allows the detection of significant changes, which are correlated with histological findings.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Biomarcadores , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Coelhos
3.
Animals (Basel) ; 12(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681865

RESUMO

A prospective, experimental, randomized, double blinded study was designed to evaluate the effects of glycosaminoglycans, with or without native type II collagen (NC), in an osteoarthritis model induced by cranial cruciate ligament transection. The following compounds were tested: chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), hyaluronic acid (HA) and NC. Fifty-four female 12-week-old New Zealand rabbits were classified into three groups: CTR (control-no treatment), CGH (CS + GlHCl + HA) and CGH-NC (CS + GlHCl + HA + NC). Each group was subdivided into three subgroups according to survival times of 24, 56 and 84 days. Over time, all rabbits developed degenerative changes associated with osteoarthritis. CGH-NC showed significantly improved values on macroscopic evaluation, compared to CTR and CGH. Microscopically, significantly better results were seen with CGH and CGH-NC, compared to CTR, and synovial membrane values were significantly better with CGH-NC compared to CGH. A significant improvement in magnetic resonance imaging biomarkers was also observed with CGH-NC in cartilage transversal relaxation time (T2) and subchondral bone D2D fractal dimension in the lateral condyle. In conclusion, our results show beneficial effects on joint health of CGH and CGH-NC and also supports that adding NC to CGH results in even greater efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA