Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(9): 2447-2464, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635572

RESUMO

Studies demonstrating the successful and safe application of magnetic hyperthermia in large animals are scarce. A therapeutic approach for advanced cancer comprising multicore encapsulated iron oxide (IO) Sarah Nanoparticles (SaNPs), that uniquely self-regulate their temperature, was developed thus overcoming the safety challenges of hyperthermia. SaNPs are intravenously injected and accumulate in tumor tissue, leading to selective heating upon exposure to an external alternating magnetic field (AMF). A series of studies were conducted in healthy swine to assess SaNPs' safety, alone or combined with AMF application. Administration of single high (up to 22 mg IO/kg) or low (3.6 mg IO/kg) SaNP doses had no adverse effects, including no infusion reactions. Vital signs remained stable with no significant clinical pathology changes, and no treatment-associated toxicities. Biodistribution analysis indicated that SaNPs predominantly accumulate in the lungs and clear in a dose- and time-dependent manner. In minipigs that received a single SaNP no-observed-adverse-effect-level (NOAEL)-based dose (3.6 mg IO/kg) with AMF, the average percentage remaining in vital organs after 90 days was 13.7%. No noticeable clinical signs were noted during the 87 to 92-day observation period following irradiation, and no inflammation, necrosis, nor thermal damage were found in the histopathology evaluation. In another minipig, ~ 90 days after three recurrent high doses (14 mg IO/kg), without AMF, almost half of the injected SaNPs were cleared with no residual detrimental effects. We demonstrate that the approach is safe and well tolerated in swine, opening potential avenues as a novel therapeutic modality for cancer patients.


Assuntos
Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias , Animais , Fenômenos Magnéticos , Neoplasias/terapia , Suínos , Porco Miniatura , Distribuição Tecidual
2.
Front Oncol ; 11: 761045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804962

RESUMO

Sarah Nanoparticles (SaNPs) are unique multicore iron oxide-based nanoparticles, developed for the treatment of advanced cancer, following standard care, through the selective delivery of thermal energy to malignant cells upon exposure to an alternating magnetic field. For their therapeutic effect, SaNPs need to accumulate in the tumor. Since the potential accumulation and associated toxicity in normal tissues are an important risk consideration, biodistribution and toxicity were assessed in naïve BALB/c mice. Therapeutic efficacy and the effect on survival were investigated in the 4T1 murine model of metastatic breast cancer. Toxicity evaluation at various timepoints did not reveal any abnormal clinical signs, evidence of alterations in organ function, nor histopathologic adverse target organ toxicity, even after a follow up period of 25 weeks, confirming the safety of SaNP use. The biodistribution evaluation, following SaNP administration, indicated that SaNPs accumulate mainly in the liver and spleen. A comprehensive pharmacokinetics evaluation, demonstrated that the total percentage of SaNPs that accumulated in the blood and vital organs was ~78%, 46%, and 36% after 4, 13, and 25 weeks, respectively, suggesting a time-dependent clearance from the body. Efficacy studies in mice bearing 4T1 metastatic tumors revealed a 49.6% and 70% reduction in the number of lung metastases and their relative size, respectively, in treated vs. control mice, accompanied by a decrease in tumor cell viability in response to treatment. Moreover, SaNP treatment followed by alternating magnetic field exposure significantly improved the survival rate of treated mice compared to the controls. The median survival time was 29 ± 3.8 days in the treated group vs. 21.6 ± 4.9 days in the control, p-value 0.029. These assessments open new avenues for generating SaNPs and alternating magnetic field application as a potential novel therapeutic modality for metastatic cancer patients.

3.
Mol Genet Metab ; 102(2): 157-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21059483

RESUMO

Classic galactosemia is an autosomal recessive disorder of galactose metabolism manifesting in the first weeks of life following exposure to a milk-based diet. Despite the benefit of avoidance of lactose, many patients suffer from long-term complications including neurological deficits and ovarian failure. To date, over 230 mutations have been described in the GALT gene resulting in galactosemia. Recently, an unusual mutation was characterized causing a 5.5 kb deletion, with a relatively high carrier rate in subjects of Ashkenazi Jewish (AJ) descent. The aim of this study was to estimate the carrier frequency of this mutation in the AJ population in Israel. For this purpose we developed a high-throughput methodology to genotype both normal and deleted alleles using a chip-based matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometer and Multiplex PCR. DNA samples of 760 anonymous AJ subjects were submitted for analysis, subsequently detecting six individuals heterozygous for the GALT deletion mutation, giving a carrier frequency of 1 in 127 (0.79%). Based on these results, we suggest that the method described here provides a basis for genetic screening and prenatal counseling and can potentially reduce the morbidity and mortality associated with delayed diagnosis of galactosemia in this patient population.


Assuntos
Frequência do Gene , Heterozigoto , Judeus/genética , Mutação , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Galactosemias/genética , Humanos , Tipagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA