Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1252191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681207

RESUMO

Due to water shortage and increased water pollution, various methods are being explored to improve water quality by treating contaminants. Sonophotocatalysis is a combination of two individual water treatment processes i.e., photocatalysis and sonocatalysis. With advantages including shorter reaction times and enhanced activity, this technique shows possible futuristic applications as an efficient water treatment technology. Herein, background insight on sonophotocalysis as a water and wastewater treatment technique as well as the general mechanism of activity is explained. The commonly used catalysts for sonophotocatalytic applications as well as their synthesis pathways are also briefly discussed. Additionally, the utilisation of sonophotocatalysis for the disinfection of various microbial species as well as treatment of wastewater pollutants including organic (dyes, pharmaceuticals and pesticides) and inorganic species (heavy metals) is deliberated. This review also gives a critical analysis of the efficiency, enhancement strategies as well as challenges and outlooks in this field. It is thus intended to give insight to researchers in the context of facilitating future developments in the field of water treatment, and advancing sonophotocatalysis towards large-scale implementation and commercialization.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770442

RESUMO

Glutathione-capped copper sulfide (CuxSy) nanoparticles with two different average sizes were successfully achieved by using a simple reduction process that involves only changing the reaction temperature. Temperature-induced changes in the size of CuxSy nanoparticles resulted in particles with different optical, morphological, and electrochemical properties. The dependence of electrochemical sensing properties on the sizes of CuxSy nanoparticles was studied by using voltammetric and amperometric techniques. The spherical CuxSy nanoparticles with the average particle size of 25 ± 0.6 nm were found to be highly conductive as compared to CuxSy nanoparticles with the average particle size of 4.5 ± 0.2 nm. The spherical CuxSy nanoparticles exhibited a low bandgap energy (Eg) of 1.87 eV, resulting in superior electrochemical properties and improved electron transfer during glucose detection. The sensor showed a very good electrocatalytic activity toward glucose molecules in the presence of interference species such as uric acid (UA), ascorbic acid (AA), fructose, sodium chloride, and sucrose. These species are often present in low concentrations in the blood. The sensor demonstrated an excellent dynamic linear range between 0.2 to 16 mM, detection limit of 0.2 mM, and sensitivity of 0.013 mA/mM. The applicability of the developed sensor for real field determination of glucose was demonstrated by use of spiked blood samples, which confirmed that the developed sensor had great potential for real analysis of blood glucose levels.

3.
J Pharm Anal ; 13(11): 1235-1251, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38174117

RESUMO

Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.

4.
Diagnostics (Basel) ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359507

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease that is caused by the Rift Valley fever virus (RVFV); Bunyaviridae: Phlebovirus. RVF disease can affect several different species, including ruminants, camels and humans and thus present a dual threat to public health and livestock food production in endemic regions. In livestock, the RVFV infection is characterised by an acute hepatitis, abortion and high mortality rates in new-born animals. The current RVF diagnostic techniques have shown good sensitivity. However, they require extensive sample processing and complex instrumentation. Owing to speed, low cost, ease of use, and most importantly, the ability to diagnose diseases at sites where they are managed, lateral flow immunoassays (LFIA) are the most widely used point-of-care (POC) tools for disease diagnosis. In this study, a lateral flow assay (LFA) device that is able to detect antibodies against RVFV, with a minimum detectable concentration of 0.125 mg/mL, was successfully developed. The LFA also successfully detected RVFV antibodies in reference RVFV sera. Protein A (ProA), which has the ability to bind immunoglobulins from different species, was used in the detection probe, giving the developed RVFV LFA potential for multi-species diagnosis.

5.
Biosensors (Basel) ; 12(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35735534

RESUMO

Two-dimensional transition metal dichalcogenides (2D TMDs) have gained considerable attention due to their distinctive properties and broad range of possible applications. One of the most widely studied transition metal dichalcogenides is molybdenum disulfide (MoS2). The 2D MoS2 nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics. Although the use of 2D MoS2 nanosheets offers several advantages and excellent properties, surface functionalization of 2D MoS2 is a potential route for further enhancing their properties and adding extra functionalities to the surface of the fabricated sensor. The functionalization of the material with various metal and metal oxide nanostructures has a significant impact on its overall electrochemical performance, improving various sensing parameters, such as selectivity, sensitivity, and stability. In this review, different methods of preparing 2D-layered MoS2 nanomaterials, followed by different surface functionalization methods of these nanomaterials, are explored and discussed. Finally, the structure-properties relationship and electrochemical sensor applications over the last ten years are discussed. Emphasis is placed on the performance of 2D MoS2 with respect to the performance of electrochemical sensors, thereby giving new insights into this unique material and providing a foundation for researchers of different disciplines who are interested in advancing the development of MoS2-based sensors.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Técnicas Biossensoriais/métodos , Grafite/química , Metais , Molibdênio/química , Nanoestruturas/química , Óxidos
6.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630936

RESUMO

Plasmonic gold nanoparticles significantly improved the efficiency of a TiO2 and Eosin Y based dye-sensitized solar cell from 2.4 to 6.43%. The gold nanoparticles' sizes that were tested were 14 nm, 30 nm and 40 nm synthesized via the systematic reduction of citrate concentration using the Turkevich method. Prestine TiO2 without plasmonic gold nanoparticles yielded an efficiency of 2.4%. However, the loading of 40 nm gold nanoparticles into the TiO2 matrix yielded the highest DSSC efficiency of 6.43% compared to 30 nm (5.91%) and 14 nm (2.6%). The relatively high efficiency demonstrated by plasmonic gold nanoparticles is ascribed to light absorption/scattering, hot electron injection and plasmon-induced resonance energy transfer (PIRET), influenced by the size of the gold nanoparticles.

7.
Front Chem ; 10: 832282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355787

RESUMO

Surface-enhanced Raman spectroscopy (SERS), a marvel that uses surfaces to enhance conventional Raman signals, is proposed for a myriad of applications, such as diagnosis of diseases, pollutants, and many more. The substrates determine the SERS enhancement, and plasmonic metallic nanoparticles such as Au, Ag, and Cu have dominated the field. However, the last decades have failed to translate SERS prototypes into real-life applications. Irreproducibility on the SERS signal that stems from the roughened SERS substrates is the main causative factor for this observation. To mitigate irreproducibility several two-dimensional (2-D) substrates have been sought for use as possible alternatives. Application of 2-D graphene substrates in Raman renders graphene-enhanced Raman spectroscopy (GERS). This account used density functional theory (DFT) substantiated with experimental Raman to compare the enhancement capabilities of plasmonic Au nanoparticles (SERS), graphene substrate (GERS), and coupling of the two SERS and GERS substrates. The DFT also enabled the study of the SERS and GERS systems molecular orbital to gain insight into their mechanisms. The amalgamation of the SERS and GERS occurrence, i.e., graphene doped with plasmonic metallic substrates showed a pronounced enhancement and matched the Au-driven enhancement emanating from both electromagnetic and charge transfer SERS and GERS mechanisms.

8.
J Nanosci Nanotechnol ; 21(10): 5260-5265, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875116

RESUMO

Laser assisted synthesis of silicon nanowires (SiNWs) was successfully achieved through the use of gold and nickel as catalysts. The diameter of the resulting SiNWs was found to be dependent on that of the catalyst in the case of gold catalyst. The gold catalysed silicon nanowires were unevenly curved and branched owing to the high kinetic energy possessed by gold nanoparticles (AuNPs) at relatively high processing temperature. The use of nickel as catalyst resulted in the formation of several SiNWs on a single nickel catalyst crystallite due to interconnection of the nickel metal crystallites at processing temperature. The morphology of SiNWs catalysed by both nickel and gold was controlled by optimising the laser energy during ablation.

9.
Nanoscale Res Lett ; 11(1): 414, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27644240

RESUMO

Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

10.
J Nanosci Nanotechnol ; 15(6): 4480-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369068

RESUMO

Herein we report on a nearly ideal Schottky diode device fabricated from Cu(2-x)Se nanoparticles synthesized using the microwave digestive method. The thermionic theory using data extracted from the experimental I-V curve resulted in the ideality factor of 4.35 and the barrier height of 0.895 eV whilst the Cheung's method resulted in the ideality factor, barrier height and series resistance of 1.04, 0.00259 eV and 0.870 Ω respectively. The Cheung's method is thought to be the most accurate as it takes into account the series resistance. The obtained values therefore are indicative of good diode behaviour of the device and this is a highly sought after goal in all electronic materials development.


Assuntos
Cobre/química , Nanopartículas/química , Nanotecnologia/métodos , Selênio/química , Coloides , Micro-Ondas
11.
Artigo em Inglês | MEDLINE | ID: mdl-24117084

RESUMO

The fate and behaviour assessment of ZnO- and Ag-engineered nanoparticles (ENPs) and bacterial viability in a simulated wastewater treatment plant (WWTP) fed with municipal wastewater was investigated through determination of ENPs stability at varying pH and continuous exposure of ENPs to wastewater, respectively. The ENPs were introduced to a 3-L bioreactor (simulated WWTP) with a hydraulic residence time (HRT) of 6 h at a dose rate of 0.83 mg/min for 240 h. The stability of the ENPs was found to be dependent on their dissolution and aggregation at different pH, where ZnO ENPs exhibited the highest dissolution at low pH compared to Ag ENPs. The results also showed that both ENPs had high affinity for the sewage sludge as they undergo aggregation under typical wastewater conditions. Results of effluent monitored daily showed mean COD removal efficiencies of 71 ± 7% and 74 ± 8% for ZnO and Ag ENPs in test units, respectively. The treated effluent had low mean concentrations of Zn (1.39 ± 0.54 mg/L) and Ag (0.12 ± 0.06 mg/L); however, elevated mean concentrations of Zn (54 ± 39 mg/g dry sludge) and Ag (57 ± 42 mg/g dry sludge) were found in the sludge - suggesting removal of the ENPs from the wastewater by biosorption and biosolid settling mechanisms. Using X-ray diffraction (XRD) and transmission electron microscopy (TEM), the mineral identities of ZnO and Ag ENPs in the sludge from the test units were found comparable to those of commercial ENPs, but larger due to agglomeration. The bacterial viability assessment after exposure to ENPs using the Live/Dead BacLight kit, although not quantitatively assessed, suggested high resilience of the bacteria useful for biodegradation of organic material in the simulated wastewater treatment system.


Assuntos
Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Prata/química , Purificação da Água/métodos , Óxido de Zinco/química , Reatores Biológicos/microbiologia , Prata/toxicidade , Óxido de Zinco/toxicidade
12.
Environ Sci Process Impacts ; 15(10): 1830-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917884

RESUMO

The toxicity effects of silver (nAg) and zinc oxide (nZnO) engineered nanoparticles (ENPs) on the duckweed Spirodela punctuta were studied to investigate the potential risks posed by these ENPs towards higher aquatic plants. The influence of media abiotic factors on the stability of the ENPs was also evaluated. Marked agglomeration of ENPs was observed after introduction into testing media whereby large particles settled out of suspension and accumulated at the bottom of testing vessels. The high ionic strength (IS) promoted agglomeration of ENPs because it reduced the inter-particle repulsion caused by a reduction in their surface charge. Low dissolution was observed for nAg, reaching only 0.015% at 1000 mg L(-1), whilst improved dissolution was observed for nZnO, only falling below analytical quantification at 0.1 mg L(-1) and lower. The quantification of free radicals namely, reactive oxygen and nitrogen species (ROS/RNS) and hydrogen peroxide (H2O2), indicated the induction of oxidative stress in plants exposed to the ENPs. A definite dose influence was observed for ROS/RNS volumes in plants exposed to nZnO for 14 days, a response not always observed. The total antioxidant capacity (TAC) and superoxide dismutase (SOD) activity in plants indicated varying degrees of oxidative toxicity caused by exposure to ENPs. This toxicity was driven mainly by particulates in plants exposed to nAg, whilst dissolved Zn(2+) was the main driver for toxicity in plants exposed to nZnO. Our findings suggest that the toxicity of nAg and nZnO could be caused by both the particulates and ionic forms, as modified by media properties.


Assuntos
Araceae/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Antioxidantes/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Monitoramento Ambiental , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície , Óxido de Zinco/química
13.
ACS Appl Mater Interfaces ; 4(3): 1656-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22352872

RESUMO

Titanium dioxide (TiO(2)) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO(2) powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures in air for 3 h. This was accompanied by phase transformation largely influenced by the method of synthesis and the mode of heating. The X-ray diffraction results are in agreement with the structural transformation indicating the gradual changes in the phase and crystallinity of the as prepared samples. The tubular structure is found to collapse at high temperature. UV-vis-IR spectroscopic results suggest that nanorods tend to absorb photons of higher energy (λ = 280 nm) than nanotubes (λ = 300 nm) but emit photons with lower energy than nanotubes. It was found that the nanotubes have a sharper photoluminance emission line at 340 nm that is absent in the nanorods. We also found that nanotubes have higher efficiency, lower threshold sensing temperature, longer response time, and shorter recovery time for hydrogen gas sensing than nanorods.

14.
J Nanosci Nanotechnol ; 11(6): 4988-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770132

RESUMO

Tin oxide (SnO2) nanoparticles with size range of 19 to 100 nm were successfully synthesized using wet chemical process (i.e., chemical precipitation and sol-gel processes). The samples were analysed by X-Ray diffraction, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, Raman and FTIR spectroscopy, BET surface area and Thermogravimetric analyses. The results showed that variation of citric acid concentration directly influences the particle size and the BET specific surface area. The XRD analysis revealed that nanoparticles were phase pure and that all materials exhibited a tetragonal rutile structure of SnO2. Characterisation of the materials was carried out using techniques such as scanning electron microscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, Thermogravimetric and BET analyses.


Assuntos
Ácido Cítrico/química , Nanopartículas Metálicas/química , Compostos de Estanho/química , Adsorção , Precipitação Química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Pressão , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA