Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400202, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818670

RESUMO

RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.

2.
J Am Chem Soc ; 146(12): 8149-8163, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38442005

RESUMO

Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.


Assuntos
Capuzes de RNA , Vacinas , Animais , Camundongos , RNA Mensageiro/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Biossíntese de Proteínas , Metilação
3.
Biomater Adv ; 157: 213727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101067

RESUMO

Traumas, fractures, and diseases can severely influence bone tissue. Insight into bone mineralization is essential for the development of therapies and new strategies to enhance bone regeneration. 3D cell culture systems, in particular cellular spheroids, have gained a lot of interest as they can recapitulate crucial aspects of the in vivo tissue microenvironment, such as the extensive cell-cell and cell-extracellular matrix (ECM) interactions found in tissue. The potential of combining spheroids and various classes of biomaterials opens also new opportunities for research within bone tissue engineering. Characterizing cellular organization, ECM structure, and ECM mineralization is a fundamental step for understanding the biological processes involved in bone tissue formation in a spheroid-based model system. Still, many experimental techniques used in this field of research are optimized for use with monolayer cell cultures. There is thus a need to develop new and improving existing experimental techniques, for applications in 3D cell culture systems. In this review, bone composition and spheroids properties are described. This is followed by an insight into the techniques that are currently used in bone spheroids research and how these can be used to study bone mineralization. We discuss the application of staining techniques used with optical and confocal fluorescence microscopy, molecular biology techniques, second harmonic imaging microscopy, Raman spectroscopy and microscopy, as well as electron microscopy-based techniques, to evaluate osteogenic differentiation, collagen production and mineral deposition. Challenges in the applications of these methods in bone regeneration and bone tissue engineering are described. STATEMENT OF SIGNIFICANCE: 3D cell cultures have gained a lot of interest in the last decades as a possible technique that can be used to recreate in vitro in vivo biological process. The importance of 3D environment during bone mineralization led scientists to use this cell culture to study this biological process, to obtain a better understanding of the events involved. New and improved techniques are also required for a proper analysis of this cell model and the process under investigation. This review summarizes the state of the art of the techniques used to study bone mineralization and how 3D cell cultures, in particular spheroids, are tested and analysed to obtain better resolved results related to this complex biological process.


Assuntos
Calcificação Fisiológica , Osteogênese , Osso e Ossos , Esferoides Celulares , Técnicas de Cultura de Células/métodos
4.
JBMR Plus ; 7(9): e10792, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701151

RESUMO

In vitro models of primary human osteocytes embedded in natural mineralized matrix without artificial scaffolds are lacking. We have established cell culture conditions that favored the natural 3D orientation of the bone cells and stimulated the cascade of signaling needed for primary human osteoblasts to differentiate into osteocytes with the characteristically phenotypical dendritic network between cells. Primary human osteoblasts cultured in a 3D rotating bioreactor and incubated with a combination of vitamins A, C, and D for up to 21 days produced osteospheres resembling native bone. Osteocyte-like cells were identified as entrapped, stellate-shaped cells interconnected through canaliculi embedded in a structured, mineralized, collagen matrix. These cells expressed late osteoblast and osteocyte markers such as osteocalcin (OCN), podoplanin (E11), dentin matrix acidic phosphoprotein 1 (DMP1), and sclerostin (SOST). Organized collagen fibrils, observed associated with the cell hydroxyapatite (HAp) crystals, were found throughout the spheroid and in between the collagen fibrils. In addition to osteocyte-like cells, the spheroids consisted of osteoblasts at various differentiation stages surrounded by a rim of cells resembling lining cells. This resemblance to native bone indicates a model system with potential for studying osteocyte-like cell differentiation, cross-talk between bone cells, and the mineralization process in a bonelike structure in vitro without artificial scaffolds. In addition, natural extracellular matrix may allow for the study of tissue-specific biochemical, biophysical, and mechanical properties. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
J Neural Eng ; 20(4)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37399808

RESUMO

Objective.Microfluidic devices interfaced with microelectrode arrays have in recent years emerged as powerful platforms for studying and manipulatingin vitroneuronal networks at the micro- and mesoscale. By segregating neuronal populations using microchannels only permissible to axons, neuronal networks can be designed to mimic the highly organized, modular topology of neuronal assemblies in the brain. However, little is known about how the underlying topological features of such engineered neuronal networks contribute to their functional profile. To start addressing this question, a key parameter is control of afferent or efferent connectivity within the network.Approach.In this study, we show that a microfluidic device featuring axon guiding channels with geometrical constraints inspired by a Tesla valve effectively promotes unidirectional axonal outgrowth between neuronal nodes, thereby enabling us to control afferent connectivity.Main results.Our results moreover indicate that these networks exhibit a more efficient network organization with higher modularity compared to single nodal controls. We verified this by applying designer viral tools to fluorescently label the neurons to visualize the structure of the networks, combined with extracellular electrophysiological recordings using embedded nanoporous microelectrodes to study the functional dynamics of these networks during maturation. We furthermore show that electrical stimulations of the networks induce signals selectively transmitted in a feedforward fashion between the neuronal populations.Significance.A key advantage with our microdevice is the ability to longitudinally study and manipulate both the structure and function of neuronal networks with high accuracy. This model system has the potential to provide novel insights into the development, topological organization, and neuroplasticity mechanisms of neuronal assemblies at the micro- and mesoscale in healthy and perturbed conditions.


Assuntos
Axônios , Neurônios , Neurônios/fisiologia , Axônios/fisiologia , Modelos Biológicos , Microeletrodos , Encéfalo , Rede Nervosa/fisiologia
6.
J Org Chem ; 88(11): 6827-6846, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37209102

RESUMO

Chemical modifications of the mRNA cap structure can enhance the stability, translational properties, and half-life of mRNAs, thereby altering the therapeutic properties of synthetic mRNA. However, cap structure modification is challenging because of the instability of the 5'-5'-triphosphate bridge and N7-methylguanosine. The Suzuki-Miyaura cross-coupling reaction between boronic acid and halogen compound is a mild, convenient, and potentially applicable approach for modifying biomolecules. Herein, we describe two methods to synthesize C8-modified cap structures using the Suzuki-Miyaura cross-coupling reaction. Both methods employed phosphorimidazolide chemistry to form the 5',5'-triphosphate bridge. However, in the first method, the introduction of the modification via the Suzuki-Miyaura cross-coupling reaction at the C8 position occurs postsynthetically, at the dinucleotide level, whereas in the second method, the modification was introduced at the level of the nucleoside 5'-monophosphate, and later, the triphosphate bridge was formed. Both methods were successfully applied to incorporate six different groups (methyl, cyclopropyl, phenyl, 4-dimethylaminophenyl, 4-cyanophenyl, and 1-pyrene) into either the m7G or G moieties of the cap structure. Aromatic substituents at the C8-position of guanosine form a push-pull system that exhibits environment-sensitive fluorescence. We demonstrated that this phenomenon can be harnessed to study the interaction with cap-binding proteins, e.g., eIF4E, DcpS, Nudt16, and snurportin.


Assuntos
Guanosina , Polifosfatos , RNA Mensageiro/química
7.
Nucleic Acids Res ; 50(16): 9051-9071, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018811

RESUMO

In mammals, m7G-adjacent nucleotides undergo extensive modifications. Ribose of the first or first and second transcribed nucleotides can be subjected to 2'-O-methylation to form cap1 or cap2, respectively. When the first transcribed nucleotide is 2'-O-methylated adenosine, it can be additionally modified to N6,2'-O-dimethyladenosine (m6Am). Recently, the crucial role of cap1 in distinguishing between 'self' and 'non-self' in mammalian cells during viral infection was revealed. Here, we attempted to understand the impact of cap methylations on RNA-related processes. Therefore, we synthesized tetranucleotide cap analogues and used them for RNA capping during in vitro transcription. Using this tool, we found that 2'-O-methylation of the second transcribed nucleotide within the mRNA 5' cap influences protein production levels in a cell-specific manner. This modification can strongly hamper protein biosynthesis or have no influence on protein production levels, depending on the cell line. Interestingly, 2'-O-methylation of the second transcribed nucleotide and the presence of m6Am as the first transcribed nucleotide serve as determinants that define transcripts as 'self' and contribute to transcript escape from the host innate immune response. Additionally, cap methylation status does not influence transcript affinity towards translation initiation factor eIF4E or in vitro susceptibility to decapping by DCP2; however, we observe the resistance of cap2-RNA to DXO (decapping exoribonuclease)-mediated decapping and degradation.


Assuntos
Nucleotídeos , Capuzes de RNA , Animais , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Nucleotídeos/metabolismo , Evasão da Resposta Imune , Mamíferos/genética
8.
Macromol Biosci ; 22(1): e2100319, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34679232

RESUMO

Mimicking the complexity of natural tissue is a major challenge in the field of tissue engineering. Here, a facile 2-step fabrication method to prepare 3D constructs with distinct regions of high cell concentrations and without the need for elaborate equipment is proposed. The initial incorporation of cells in a sacrificial alginate matrix allows the addition of other, cell relevant biopolymers, such as, collagen to form a spatially confined, interpenetrating network at the microscale. A layered structure at the macroscale can be achieved by incorporating these cell-containing microspheres in thin collagen layers. Cells are locally released by de-gelling the alginate matrix and their attachment to the collagen hydrogel layers has been studied. The use of the murine pre-osteoblast cell line MC3T3-E1 as an example cell line shows that the cells behave differently in their cell migration pattern based on the initial composition of the alginate microspheres.


Assuntos
Alginatos , Hidrogéis , Alginatos/química , Animais , Colágeno , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Microesferas , Engenharia Tecidual/métodos
9.
Nucleic Acids Res ; 50(1): e3, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34591964

RESUMO

Development of RNA-based technologies relies on the ability to detect, manipulate, and modify RNA. Efficient, selective and scalable covalent modification of long RNA molecules remains a challenge. We report a chemical method for modification of RNA 3'-end based on previously unrecognized superior reactivity of N-substituted ethylenediamines in reductive amination of periodate-oxidized RNA. Using this method, we obtained fluorescently labelled or biotinylated RNAs varying in length (from 3 to 2000 nt) and carrying different 5' ends (including m7G cap) in high yields (70-100% by HPLC). The method is scalable (up to sub-milligrams of mRNA) and combined with label-facilitated HPLC purification yields highly homogeneous products. The combination of 3'-end labelling with 5'-end labelling by strain-promoted azide-alkyne cycloaddition (SPAAC) afforded a one-pot protocol for site-specific RNA bifunctionalization, providing access to two-colour fluorescent RNA probes. These probes exhibited fluorescence resonance energy transfer (FRET), which enabled real-time monitoring of several RNA hydrolase activities (RNase A, RNase T1, RNase R, Dcp1/2, and RNase H). Dually labelled mRNAs were efficiently translated in cultured cells and in zebrafish embryos, which combined with their detectability by fluorescent methods and scalability of the synthesis, opens new avenues for the investigation of mRNA metabolism and the fate of mRNA-based therapeutics.


Assuntos
Corantes Fluorescentes/metabolismo , Sondas RNA/metabolismo , RNA Mensageiro/metabolismo , Animais , Células HeLa , Humanos , Peixe-Zebra
10.
Pharmaceutics ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834356

RESUMO

Dinucleotide analogs of the messenger RNA cap (m7GpppN) are useful research tools and have potential applications as translational inhibitors or reagents for modification of in vitro transcribed mRNAs. It has been previously reported that replacing the methyl group at the N7-position with benzyl (Bn) produces a dinucleotide cap with superior properties. Here, we followed up on this finding by synthesizing 17 novel Bn7GpppG analogs and determining their structure-activity relationship regarding translation and translational inhibition. The compounds were prepared in two steps, including selective N7-alkylation of guanosine 5'-monophosphate by arylmethyl bromide followed by coupling with imidazole-activated GDP, with total yields varying from 22% to 62%. The compounds were then evaluated by determining their affinity for eukaryotic translation initiation factor 4E (eIF4E), testing their susceptibility to decapping pyrophosphatase, DcpS-which is most likely the major cellular enzyme targeting this type of compound-and determining their translation inhibitory properties in vitro. We also synthesized mRNAs capped with the evaluated compounds and tested their translational properties in A549 cells. Our studies identified N7-(4-halogenbenzyl) substituents as promising modifications in the contexts of either mRNA translation or translational inhibition. Finally, to gain more insight into the consequences at the molecular level of N7-benzylation of the mRNA cap, we determined the crystal structures of three compounds with eIF4E.

11.
Nanoscale Res Lett ; 16(1): 143, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524556

RESUMO

BACKGROUND: In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. RESULTS: In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. CONCLUSION: Overall, we show that the combination of high throughput nanofabrication, advanced optical microscopy, molecular biology tools to visualise cellular processes and data analysis can be used to investigate how cells interact with nanostructured surfaces and will in the future help to create culture substrates that induce particular cell function.

12.
Chem Sci ; 12(30): 10242-10251, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377411

RESUMO

Targeting cap-dependent translation initiation is one of the experimental approaches that could lead to the development of novel anti-cancer therapies. Synthetic dinucleoside 5',5'-triphosphates cap analogs are potent antagonists of eukaryotic translation initiation factor 4E (eIF4E) in vitro and could counteract elevated levels of eIF4E in cancer cells; however, transformation of these compounds into therapeutic agents remains challenging - they do not easily penetrate into cells and are susceptible to enzymatic cleavage. Here, we tested the potential of several small molecule ligands - folic acid, biotin, glucose, and cholesterol - to deliver both hydrolyzable and cleavage-resistant cap analogs into cells. A broad structure-activity relationship (SAR) study using model fluorescent probes and cap-ligand conjugates showed that cholesterol greatly facilitates uptake of cap analogs without disturbing the interactions with eIF4E. The most potent cholesterol conjugate identified showed apoptosis-mediated cytotoxicity towards cancer cells.

13.
Sci Rep ; 11(1): 13675, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211000

RESUMO

Biocementation is commonly based on microbial-induced carbonate precipitation (MICP) or enzyme-induced carbonate precipitation (EICP), where biomineralization of [Formula: see text] in a granular medium is used to produce a sustainable, consolidated porous material. The successful implementation of biocementation in large-scale applications requires detailed knowledge about the micro-scale processes of [Formula: see text] precipitation and grain consolidation. For this purpose, we present a microscopy sample cell that enables real time and in situ observations of the precipitation of [Formula: see text] in the presence of sand grains and calcite seeds. In this study, the sample cell is used in combination with confocal laser scanning microscopy (CLSM) which allows the monitoring in situ of local pH during the reaction. The sample cell can be disassembled at the end of the experiment, so that the precipitated crystals can be characterized with Raman microspectroscopy and scanning electron microscopy (SEM) without disturbing the sample. The combination of the real time and in situ monitoring of the precipitation process with the possibility to characterize the precipitated crystals without further sample processing, offers a powerful tool for knowledge-based improvements of biocementation.

14.
Chemistry ; 27(47): 12190-12197, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34114681

RESUMO

Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3'-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3',5'-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5'-fluorescently labeled m7 Gp3 Am -capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.


Assuntos
Azidas , RNA , Alcinos , Reação de Cicloadição , RNA Mensageiro/genética
15.
Sci Rep ; 11(1): 7687, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833335

RESUMO

Fluorescence anisotropy (FA) is a powerful technique for the discovery of protein inhibitors in a high-throughput manner. In this study, we sought to develop new universal FA-based assays for the evaluation of compounds targeting mRNA 5' cap-binding proteins of therapeutic interest, including eukaryotic translation initiation factor 4E and scavenger decapping enzyme. For this purpose, a library of 19 carboxyfluorescein probes based on 7-methylguanine nucleotides was evaluated as FA probes for these proteins. Optimal probe:protein systems were further investigated in competitive binding experiments and adapted for high-throughput screening. Using a small in-house library of compounds, we verified and confirmed the accuracy of the developed FA assay to study cap-binding protein binders. The applications of the most promising probes were then extended to include evaluation of allosteric inhibitors as well as RNA ligands. From this analysis, we confirmed the utility of the method to study small molecule ligands and evaluate differently 5' capped RNAs.


Assuntos
Fluoresceínas/química , Polarização de Fluorescência/métodos , Guanina/análogos & derivados , Sondas Moleculares/química , Guanina/química
16.
Mater Sci Eng C Mater Biol Appl ; 121: 111840, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579478

RESUMO

The application of microspheres instead of bulk hydrogels in cell-laden biomaterials offers multiple advantages such as a high surface-to-volume-ratio and, consequently, a better nutrition and oxygen transfer to and from cells. The preparation of inert alginate microspheres is facile, quick, and well-established and the fabrication of alginate-collagen microspheres has been previously reported. However, no detailed characterization of the collagen fibrillogenesis in the alginate matrix is available. We use second-harmonic imaging microscopy reflection confocal microscopy and turbidity assay to study the assembly of collagen in alginate microspheres. We show that the assembly of collagen fibers in a gelled alginate matrix is a complex process that can be aided by addition of small polar molecules, such as glycine and by a careful selection of the gelling buffer used to prepare alginate hydrogels.


Assuntos
Alginatos , Colágeno , Materiais Biocompatíveis , Ácidos Hexurônicos , Hidrogéis , Microesferas
17.
RNA Biol ; 18(5): 669-687, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618611

RESUMO

Human innate cellular defence pathways have evolved to sense and eliminate pathogens, of which, viruses are considered one of the most dangerous. Their relatively simple structure makes the identification of viral invasion a difficult task for cells. In the course of evolution, viral nucleic acids have become one of the strongest and most reliable early identifiers of infection. When considering RNA virus recognition, RNA sensing is the central mechanism in human innate immunity, and effectiveness of this sensing is crucial for triggering an appropriate antiviral response. Although human cells are armed with a variety of highly specialized receptors designed to respond only to pathogenic viral RNA, RNA viruses have developed an array of mechanisms to avoid being recognized by human interferon-mediated cellular defence systems. The repertoire of viral evasion strategies is extremely wide, ranging from masking pathogenic RNA through end modification, to utilizing sophisticated techniques to deceive host cellular RNA degrading enzymes, and hijacking the most basic metabolic pathways in host cells. In this review, we aim to dissect human RNA sensing mechanisms crucial for antiviral immune defences, as well as the strategies adopted by RNA viruses to avoid detection and degradation by host cells. We believe that understanding the fate of viral RNA upon infection, and detailing the molecular mechanisms behind virus-host interactions, may be helpful for developing more effective antiviral strategies; which are urgently needed to prevent the far-reaching consequences of widespread, highly pathogenic viral infections.


Assuntos
Vírus de RNA/patogenicidade , RNA Viral/fisiologia , Viroses/virologia , Animais , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/fisiologia , Vírus de RNA/fisiologia , RNA Viral/genética , Viroses/genética , Viroses/imunologia , Replicação Viral/genética
18.
PLoS One ; 16(2): e0240763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561160

RESUMO

Microbial-induced calcium carbonate precipitation (MICP) is a biological process inducing biomineralization of CaCO3. This can be used to form a solid, concrete-like material. To be able to use MICP successfully to produce solid materials, it is important to understand the formation process of the material in detail. It is well known that crystallization surfaces can influence the precipitation process. Therefore, we present in this contribution a systematic study investigating the influence of calcite seeds on the MICP process. We focus on the changes in the pH and changes of the optical density (OD) signal measured with absorption spectroscopy to analyze the precipitation process. Furthermore, optical microscopy was used to visualize the precipitation processes in the sample and connect them to changes in the pH and OD. We show, that there is a significant difference in the pH evolution between samples with and without calcite seeds present and that the shape of the pH evolution and the changes in OD can give detailed information about the mineral precipitation and transformations. In the presented experiments we show, that amorphous calcium carbonate (ACC) can also precipitate in the presence of initial calcite seeds and this can have implications for consolidated MICP materials.


Assuntos
Biomineralização/fisiologia , Carbonato de Cálcio/química , Materiais de Construção/microbiologia , Carbonato de Cálcio/metabolismo , Carbonatos/química , Precipitação Química , Microscopia/métodos , Minerais/química , Solo , Sporosarcina/metabolismo
19.
ACS Chem Biol ; 16(2): 334-343, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33439620

RESUMO

mRNA-based therapies and vaccines constitute a disruptive technology with the potential to revolutionize modern medicine. Chemically modified 5' cap structures have provided access to mRNAs with superior translational properties that could benefit the currently flourishing mRNA field. Prime examples of compounds that enhance mRNA properties are antireverse cap analog diastereomers that contain an O-to-S substitution within the ß-phosphate (ß-S-ARCA D1 and D2), where D1 is used in clinically investigated mRNA vaccines. The compounds were previously found to have high affinity for eukaryotic translation initiation factor 4E (eIF4E) and augment translation in vitro and in vivo. However, the molecular basis for the beneficial "thio-effect" remains unclear. Here, we employed multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic structures to investigate the consequences of the ß-O-to-S or -Se substitution on the interaction with eIF4E. We determined the SP/RP configurations of ß-S-ARCA and related compounds and obtained structural insights into the binding. Unexpectedly, in both stereoisomers, the ß-S/Se atom occupies the same binding cavity between Lys162 and Arg157, indicating that the key driving force for complex stabilization is the interaction of negatively charged S/Se with positively charged amino acids. This was observed for all structural variants of the cap and required significantly different conformations of the triphosphate for each diastereomer. This finding explains why both ß-S-ARCA diastereomers have higher affinity for eIF4E than unmodified caps. Binding affinities determined for di-, tri-, and oligonucleotide cap analogs suggested that the "thio-effect" was preserved in longer RNAs. Our observations broaden the understanding of thiophosphate biochemistry and enable the rational design of translationally active mRNAs and eIF4E-targeting drugs.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Capuzes de RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/química , Camundongos , Conformação de Ácido Nucleico , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Oligonucleotídeos Fosforotioatos/química , Ligação Proteica , Capuzes de RNA/química , Eletricidade Estática , Estereoisomerismo
20.
Biomater Sci ; 8(20): 5583-5588, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32975260

RESUMO

Many material systems that can conduct electronic current have been in recent years studied in the context of tissue engineering. It is suggested that materials that can carry electronic current are necessary or beneficial in tissue engineering of cardiac, muscle, nerve and bone tissues. The mechanism by which such systems could influences cells is however unclear and the complexity of the interface between biological systems and electroconductive artificial systems is often underestimated. In this contribution, I review some of the recent literature in this field and highlight uncertainties, aiming to stimulate more theoretical and experimental work. Progress in the field of scaffold-based tissue engineering of electroactive tissues is tightly coupled to our understanding of biophysical processes that take place at scaffold-cell interface. Some authors consider electronic and ionic conductance as equivalent and develop novel materials based on this assumption. However, lack of good theoretical understanding hampers development of new materials and novel regenerative strategies.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Materiais Biocompatíveis , Osso e Ossos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA