Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051393

RESUMO

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.


Assuntos
Membrana Basal , Colágeno Tipo IV , Matriz Extracelular , Animais , Camundongos , Membrana Basal/crescimento & desenvolvimento , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Corantes Fluorescentes , Folículo Piloso/crescimento & desenvolvimento , Células-Tronco
2.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808687

RESUMO

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.

3.
PLoS Genet ; 19(7): e1010849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463168

RESUMO

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Assuntos
Polaridade Celular , Proteínas Desgrenhadas , Proteínas de Drosophila , Proteínas de Membrana , Animais , Camundongos , Polaridade Celular/genética , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação
4.
Proc Natl Acad Sci U S A ; 119(30): e2123056119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867835

RESUMO

The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model.


Assuntos
Actinas , Actomiosina , Membrana Celular , Proteínas Ligadas por GPI , Estresse Mecânico , Actinas/química , Actomiosina/química , Animais , Células CHO , Membrana Celular/química , Cricetulus , Proteínas Ligadas por GPI/química , Lipídeos/química
5.
Front Cell Dev Biol ; 10: 1064907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712970

RESUMO

Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its Drosophila ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the Celsr1 -/- phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.

6.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252168

RESUMO

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cloroquina/farmacologia , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidroxicloroquina/administração & dosagem , Macrolídeos/farmacologia , Niclosamida/administração & dosagem , Niclosamida/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero
7.
Protein Sci ; 29(6): 1355-1365, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297381

RESUMO

Our understanding of the plasma membrane structure has undergone a major change since the proposal of the fluid mosaic model of Singer and Nicholson in the 1970s. In this model, the membrane, composed of over thousand lipid and protein species, is organized as a well-equilibrated two-dimensional fluid. Here, the distribution of lipids is largely expected to reflect a multicomponent system, and proteins are expected to be surrounded by an annulus of specialized lipid species. With the recognition that a multicomponent lipid membrane is capable of phase segregation, the membrane is expected to appear as patchwork quilt pattern of membrane domains. However, the constituents of a living membrane are far from being well equilibrated. The living cell membrane actively maintains a trans-bilayer asymmetry of composition, and its constituents are subject to a number of dynamic processes due to synthesis, lipid transfer as well as membrane traffic and turnover. Moreover, membrane constituents engage with the dynamic cytoskeleton of a living cell, and are both passively as well as actively manipulated by this engagement. The extracellular matrix and associated elements also interact with membrane proteins contributing to another layer of interaction. At the nano- and mesoscale, the organization of lipids and proteins emerge from these encounters, as well as from protein-protein, protein-lipid, and lipid-lipid interactions in the membrane. New methods to study the organization of membrane components at these scales have also been developed, and provide an opportunity to synthesize a new picture of the living cell surface as an active membrane composite.


Assuntos
Membrana Celular , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Lipídeos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
8.
Mol Biol Cell ; 31(7): 561-579, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31577524

RESUMO

Transmembrane adhesion receptors at the cell surface, such as CD44, are often equipped with modules to interact with the extracellular matrix (ECM) and the intracellular cytoskeletal machinery. CD44 has been recently shown to compartmentalize the membrane into domains by acting as membrane pickets, facilitating the function of signaling receptors. While spatial organization and diffusion studies of membrane proteins are usually conducted separately, here we combine observations of organization and diffusion by using high spatio-temporal resolution imaging on living cells to reveal a hierarchical organization of CD44. CD44 is present in a meso-scale meshwork pattern where it exhibits enhanced confinement and is enriched in nanoclusters of CD44 along its boundaries. This nanoclustering is orchestrated by the underlying cortical actin dynamics. Interaction with actin is mediated by specific segments of the intracellular domain. This influences the organization of the protein at the nano-scale, generating a selective requirement for formin over Arp2/3-based actin-nucleation machinery. The extracellular domain and its interaction with elements of ECM do not influence the meso-scale organization, but may serve to reposition the meshwork with respect to the ECM. Taken together, our results capture the hierarchical nature of CD44 organization at the cell surface, with active cytoskeleton-templated nanoclusters localized to a meso-scale meshwork pattern.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Receptores de Hialuronatos/metabolismo , Nanopartículas/química , Actomiosina/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Difusão , Forminas/metabolismo , Humanos , Receptores de Hialuronatos/química , Modelos Biológicos , Domínios Proteicos , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA