Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 9(1): 59, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612266

RESUMO

Immune responses can have opposing effects in colorectal cancer (CRC), the balance of which may determine whether a cancer regresses, progresses, or potentially metastasizes. These effects are evident in CRC consensus molecular subtypes (CMS) where both CMS1 and CMS4 contain immune infiltrates yet have opposing prognoses. The microbiome has previously been associated with CRC and immune response in CRC but has largely been ignored in the CRC subtype discussion. We used CMS subtyping on surgical resections from patients and aimed to determine the contributions of the microbiome to the pleiotropic effects evident in immune-infiltrated subtypes. We integrated host gene-expression and meta-transcriptomic data to determine the link between immune characteristics and microbiome contributions in these subtypes and identified lipopolysaccharide (LPS) binding as a potential functional mechanism. We identified candidate bacteria with LPS properties that could affect immune response, and tested the effects of their LPS on cytokine production of peripheral blood mononuclear cells (PBMCs). We focused on Fusobacterium periodonticum and Bacteroides fragilis in CMS1, and Porphyromonas asaccharolytica in CMS4. Treatment of PBMCs with LPS isolated from these bacteria showed that F. periodonticum stimulates cytokine production in PBMCs while both B. fragilis and P. asaccharolytica had an inhibitory effect. Furthermore, LPS from the latter two species can inhibit the immunogenic properties of F. periodonticum LPS when co-incubated with PBMCs. We propose that different microbes in the CRC tumor microenvironment can alter the local immune activity, with important implications for prognosis and treatment response.


Assuntos
Neoplasias Colorretais , Lipopolissacarídeos , Humanos , Leucócitos Mononucleares , Microambiente Tumoral , Bactérias/genética , Citocinas , Imunidade
2.
Microbiol Resour Announc ; 8(20)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097509

RESUMO

Beatrix, Carthage, Daegal, Dulcie, Fancypants, Fenn, Inca, Naira, and Robyn are newly isolated bacteriophages capable of infecting Mycolicibacterium smegmatis mc2 155. We discovered, sequenced, and annotated these New Zealand bacteriophages. These phages illustrate that New Zealand harbors a selection of the highly diverse and distributed mycobacteriophage clusters found globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA