Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12714, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830923

RESUMO

Infrastructure is often a limiting factor in microplastics research impacting the production of scientific outputs and monitoring data. International projects are therefore required to promote collaboration and development of national and regional scientific hubs. The Commonwealth Litter Programme and the Ocean Country Partnership Programme were developed to support Global South countries to take actions on plastics entering the oceans. An international laboratory network was developed to provide the infrastructure and in country capacity to conduct the collection and processing of microplastics in environmental samples. The laboratory network was also extended to include a network developed by the University of East Anglia, UK. All the laboratories were provided with similar equipment for the collection, processing and analysis of microplastics in environmental samples. Harmonised protocols and training were also provided in country during laboratory setup to ensure comparability of quality-controlled outputs between laboratories. Such large networks are needed to produce comparable baseline and monitoring assessments.


Assuntos
Monitoramento Ambiental , Laboratórios , Microplásticos , Microplásticos/análise , Monitoramento Ambiental/métodos , Laboratórios/normas , Cooperação Internacional
2.
Sci Total Environ ; 902: 165997, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536608

RESUMO

We studied the ten most frequently encountered litter items from the seafloor in European seas to advance actions and inform future mitigation measures to reduce marine litter and the associated social, economic and environmental impacts it has on European seas and beyond. Data were collected during trawl surveys from 2012 to 2020 as part of national and regional marine litter monitoring programmes in the Greater North Sea (5652 trawls), Celtic Seas (3505), Bay of Biscay (651), and Baltic Sea (3688). A Bayesian approach is used to quantify the variation in the item rankings. Overall, plastic items predominate in the top positions in each area. Synthetic rope, plastic sheets, monofilament fishing line and plastic bags occupy four of the top five positions for each of the Greater North Sea, Celtic Seas and the Bay of Biscay. Items from fishing and rope (representing mainly other maritime activities) are strongly represented in the top ten lists from three of our four areas, with synthetic rope, fishing nets, and tangled and untangled monofilament fishing line listed in the top seven positions for the Greater North Sea, Celtic Seas and the Bay of Biscay. The top ten items in the Baltic Sea are of a different profile to the other regions, but the most commonly caught items are still predominantly plastic, with plastic sheets, other plastic items and plastic bags occupying three of the top four positions. The findings in this study highlight the need to address sea-based sources to try and eliminate litter from fishing and maritime activities. Measures such as improved port reception facilities, marking of fishing gear, promoting reporting of the loss of fishing gear and increasing public awareness should be introduced.

3.
Mar Pollut Bull ; 163: 111948, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33482492

RESUMO

An investigation into the abundance and distribution of meso- and microplastics within the Port of Durban was conducted using a static immersible water pump and particle filtration system to collect meso- and microplastics from the water column, microplastics from sediment samples and corresponding CTD. Microplastics were detected in all samples under investigation. Results suggest that sewage overflow, stormwater drains, port operations, followed by rivers are input areas for mitigation to focus on. Identifying meso- and microplastics inputs, baselines and distribution allow for long term monitoring and management in a harbour environment. This can potentially contribute to the control and regulation of small plastics particles in harbours, and the subsequent transport of these pollutants via dredged material into other ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , África do Sul , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 575: 1074-1086, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693155

RESUMO

Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites. Additionally, the application of this technology could help improve correlative work on biological impacts under national and international auspices when linking biological effects to more biologically relevant metal concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA