Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 185(7): 4336-43, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20802151

RESUMO

Exposure to Mycobacterium tuberculosis can result in lifelong but asymptomatic infection in most individuals. Although CD8(+) T cells are elicited at high frequencies over the course of infection in both humans and mice, how phagosomal M. tuberculosis Ags are processed and presented by MHC class I molecules is poorly understood. Broadly, both cytosolic and noncytosolic pathways have been described. We have previously characterized the presentation of three HLA-I epitopes from M. tuberculosis and shown that these Ags are processed in the cytosol, whereas others have demonstrated noncytosolic presentation of the 19-kDa lipoprotein as well as apoptotic bodies from M. tuberculosis-infected cells. In this paper, we now characterize the processing pathway in an additional six M. tuberculosis epitopes from four proteins in human dendritic cells. Addition of the endoplasmic reticulum-Golgi trafficking inhibitor, brefeldin A, resulted in complete abrogation of Ag processing consistent with cytosolic presentation. However, although addition of the proteasome inhibitor epoxomicin blocked the presentation of two epitopes, presentation of four epitopes was enhanced. To further examine the requirement for proteasomal processing of an epoxomicin-enhanced epitope, an in vitro proteasome digestion assay was established. We find that the proteasome does indeed generate the epitope and that epitope generation is enhanced in the presence of epoxomicin. To further confirm that both the epoxomicin-inhibited and epoxomicin-enhanced epitopes are processed cytosolically, we demonstrate that TAP transport and new protein synthesis are required for presentation. Taken together, these data demonstrate that immunodominant M. tuberculosis CD8(+) Ags are processed and presented using a cytosolic pathway.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Citosol/imunologia , Epitopos Imunodominantes/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citosol/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Epitopos de Linfócito T/imunologia , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Humanos , Epitopos Imunodominantes/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
PLoS Pathog ; 5(4): e1000374, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360129

RESUMO

Mycobacterium tuberculosis (Mtb) resides in a long-lived phagosomal compartment that resists maturation. The manner by which Mtb antigens are processed and presented on MHC Class I molecules is poorly understood. Using human dendritic cells and IFN-gamma release by CD8(+) T cell clones, we examined the processing and presentation pathway for two Mtb-derived antigens, each presented by a distinct HLA-I allele (HLA-Ia versus HLA-Ib). Presentation of both antigens is blocked by the retrotranslocation inhibitor exotoxin A. Inhibitor studies demonstrate that, after reaching the cytosol, both antigens require proteasomal degradation and TAP transport, but differ in the requirement for ER-golgi egress and new protein synthesis. Specifically, presentation by HLA-B8 but not HLA-E requires newly synthesized HLA-I and transport through the ER-golgi. Phenotypic analysis of the Mtb phagosome by flow organellometry revealed the presence of Class I and loading accessory molecules, including TAP and PDI. Furthermore, loaded HLA-I:peptide complexes are present within the Mtb phagosome, with a pronounced bias towards HLA-E:peptide complexes. In addition, protein analysis also reveals that HLA-E is enriched within the Mtb phagosome compared to HLA-A2. Together, these data suggest that the phagosome, through acquisition of ER-localized machinery and as a site of HLA-I loading, plays a vital role in the presentation of Mtb-derived antigens, similar to that described for presentation of latex bead-associated antigens. This is, to our knowledge, the first description of this presentation pathway for an intracellular pathogen. Moreover, these data suggest that HLA-E may play a unique role in the presentation of phagosomal antigens.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Bactérias/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mycobacterium tuberculosis/imunologia , Fagossomos/metabolismo , Antígenos de Bactérias/imunologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA