Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293011

RESUMO

C-di-AMP is an essential second messenger in many bacteria but its levels must be regulated. Unregulated c-di-AMP accumulation attenuates the virulence of many bacterial pathogens, including those that do not require c-di-AMP for growth. However, the mechanisms by which c-di-AMP regulates bacterial pathogenesis remain poorly understood. In Listeria monocytogenes , a mutant lacking both c-di-AMP phosphodiesterases, denoted as the ΔPDE mutant, accumulates a high c-di-AMP level and is significantly attenuated in the mouse model of systemic infection. All key L. monocytogenes virulence genes are transcriptionally upregulated by the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Our transcriptomic analysis revealed that the ΔPDE mutant is significantly impaired for the expression of virulence genes within the PrfA core regulon. Subsequent quantitative gene expression analyses validated this phenotype both at the basal level and upon PrfA activation by GSH. A constitutively active PrfA * variant, PrfA G145S, which mimics the GSH-bound conformation, restores virulence gene expression in ΔPDE but only partially rescues virulence defect. Through GSH quantification and uptake assays, we found that the ΔPDE strain is significantly depleted for GSH, and that c-di-AMP inhibits GSH uptake. Constitutive expression of gshF (encoding a GSH synthetase) does not restore GSH levels in the ΔPDE strain, suggesting that c-di-AMP inhibits GSH synthesis activity or promotes GSH catabolism. Taken together, our data reveals GSH metabolism as another pathway that is regulated by c-di-AMP. C-di-AMP accumulation depletes cytoplasmic GSH levels within L. monocytogenes that leads to impaired virulence program expression. IMPORTANCE: C-di-AMP regulates both bacterial pathogenesis and interactions with the host. Although c-di-AMP is essential in many bacteria, its accumulation also attenuates the virulence of many bacterial pathogens. Therefore, disrupting c-di-AMP homeostasis is a promising antibacterial treatment strategy, and has inspired several studies that screened for chemical inhibitors of c-di-AMP phosphodiesterases. However, the mechanisms by which c-di-AMP accumulation diminishes bacterial pathogenesis are poorly understood. Such understanding will reveal the molecular function of c-di-AMP, and inform therapeutic development strategies. Here, we identify GSH metabolism as a pathway regulated by c-di-AMP that is pertinent to L. monocytogenes replication in the host. Given the role of GSH as a virulence signal, nutrient, and antioxidant, GSH depletion impairs virulence program expression and likely diminishes host adaptation.

2.
J Bacteriol ; 204(1): e0020621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662239

RESUMO

Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. c-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by Escherichia coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP- and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference for the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Listeria monocytogenes/enzimologia , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Mutação , Diester Fosfórico Hidrolases/genética , Fatores de Virulência
3.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846120

RESUMO

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Febre Recorrente/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia/patogenicidade , AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Fósforo-Oxigênio Liases/genética , Febre Recorrente/metabolismo , Sistemas do Segundo Mensageiro , Virulência/genética
4.
Clin Cancer Res ; 27(6): 1695-1705, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414136

RESUMO

PURPOSE: Receptor tyrosine kinase fusions in colorectal cancers are rare, but potentially therapeutically relevant. We describe clinical, molecular, and pathologic attributes of RTK fusion-associated colorectal cancer. EXPERIMENTAL DESIGN: We identified all cases with RTK fusions in patients with colorectal cancer seen at Dana-Farber Cancer Institute (Boston, MA) who underwent OncoPanel testing between 2013 and 2018. Clinical, histologic, and molecular features were extracted from the patient charts and molecular testing results. RESULTS: We identified 12 driver oncogenic fusions in various RTKs. These fusions occurred exclusively in BRAF and RAS wild-type tumors and were enriched in right-sided and mismatch repair-deficient (MMR-D) colorectal cancers. All of the MMR-D colorectal cancers with RTK fusions were found in tumors with acquired MMR-D due to MLH1 promoter hypermethylation and one was associated with a sessile serrated polyp. Molecular profiles of MMR-D colorectal cancer with RTK fusions largely resembled BRAF V600E-mutated MMR-D colorectal cancer, rather than those secondary to Lynch syndrome. We describe two patients with fusion-associated microsatellite stable (MSS) colorectal cancer who derived clinical benefit from therapeutic targeting of their translocation. The first harbored an ALK-CAD fusion and received sequential crizotinib and alectinib therapy for a total of 7.5 months until developing an ALK L1196Q gatekeeper mutation. The second patient, whose tumor contained an ROS1-GOPC fusion, continues to benefit from entrectinib after 9 months of therapy. CONCLUSIONS: RTK fusions in colorectal cancer are a rare, but important disease subgroup that occurs in RAS and BRAF wild-type tumors. Despite enrichment in acquired MMR-D tumors, RTK fusions also occur in MSS colorectal cancer and provide an important therapeutic target.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Adulto , Idoso , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico
5.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33020220

RESUMO

Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger among bacteria. c-di-AMP regulates many cellular pathways through direct binding to several molecular targets in bacterial cells. c-di-AMP depletion is well known to destabilize the bacterial cell wall, resulting in increased bacteriolysis and enhanced susceptibility to cell wall targeting antibiotics. Using the human pathogen Listeria monocytogenes as a model, we found that c-di-AMP accumulation also impaired cell envelope integrity. An L. monocytogenes mutant deleted for c-di-AMP phosphodiesterases (pdeA pgpH mutant) exhibited a 4-fold increase in c-di-AMP levels and several cell wall defects. For instance, the pdeA pgpH mutant was defective for the synthesis of peptidoglycan muropeptides and was susceptible to cell wall-targeting antimicrobials. Among different muropeptide precursors, we found that the pdeA pgpH strain was particularly impaired in the synthesis of d-Ala-d-Ala, which is required to complete the pentapeptide stem associated with UDP-N-acetylmuramic acid (MurNAc). This was consistent with an increased sensitivity to d-cycloserine, which inhibits the d-alanine branch of peptidoglycan synthesis. Finally, upon examining d-Ala:d-Ala ligase (Ddl), which catalyzes the conversion of d-Ala to d-Ala-d-Ala, we found that its activity was activated by K+ Based on previous reports that c-di-AMP inhibits K+ uptake, we propose that c-di-AMP accumulation impairs peptidoglycan synthesis, partially through the deprivation of cytoplasmic K+ levels, which are required for cell wall-synthetic enzymes.IMPORTANCE The bacterial second messenger c-di-AMP is produced by a large number of bacteria and conditionally essential to many species. Conversely, c-di-AMP accumulation is also toxic to bacterial physiology and pathogenesis, but its mechanisms are largely undefined. We found that in Listeria monocytogenes, elevated c-di-AMP levels diminished muropeptide synthesis and increased susceptibility to cell wall-targeting antimicrobials. Cell wall defects might be an important mechanism for attenuated virulence in bacteria with high c-di-AMP levels.


Assuntos
AMP Cíclico/metabolismo , Listeria monocytogenes/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Listeriose/microbiologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro
6.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978126

RESUMO

Zymomonas mobilis is a promising biofuel producer due to its high alcohol tolerance and streamlined metabolism that efficiently converts sugar to ethanol. Z. mobilis genes are poorly characterized relative to those of model bacteria, hampering our ability to rationally engineer the genome with pathways capable of converting sugars from plant hydrolysates into valuable biofuels and bioproducts. Many of the unique properties that make Z. mobilis an attractive biofuel producer are controlled by essential genes; however, these genes cannot be manipulated using traditional genetic approaches (e.g., deletion or transposon insertion) because they are required for viability. CRISPR interference (CRISPRi) is a programmable gene knockdown system that can precisely control the timing and extent of gene repression, thus enabling targeting of essential genes. Here, we establish a stable, high-efficacy CRISPRi system in Z. mobilis that is capable of perturbing all genes-including essential genes. We show that Z. mobilis CRISPRi causes either strong knockdowns (>100-fold) using single guide RNA (sgRNA) spacers that perfectly match target genes or partial knockdowns using spacers with mismatches. We demonstrate the efficacy of Z. mobilis CRISPRi by targeting essential genes that are universally conserved in bacteria, are key to the efficient metabolism of Z. mobilis, or underlie alcohol tolerance. Our Z. mobilis CRISPRi system will enable comprehensive gene function discovery, opening a path to rational design of biofuel production strains with improved yields.IMPORTANCE Biofuels produced by microbial fermentation of plant feedstocks provide renewable and sustainable energy sources that have the potential to mitigate climate change and improve energy security. Engineered strains of the bacterium Z. mobilis can convert sugars extracted from plant feedstocks into next-generation biofuels like isobutanol; however, conversion by these strains remains inefficient due to key gaps in our knowledge about genes involved in metabolism and stress responses such as alcohol tolerance. Here, we develop CRISPRi as a tool to explore gene function in Z. mobilis We characterize genes that are essential for growth, required to ferment sugar to ethanol, and involved in resistance to isobutanol. Our Z. mobilis CRISPRi system makes it straightforward to define gene function and can be applied to improve strain engineering and increase biofuel yields.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes Bacterianos , Estudos de Associação Genética/métodos , Zymomonas/genética , Biocombustíveis/microbiologia , RNA Bacteriano , RNA Guia de Cinetoplastídeos/metabolismo , Zymomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA