Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2315598121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502694

RESUMO

Most macroscopic magnetic phenomena (including magnetic hysteresis) are typically understood classically. Here, we examine the dynamics of a uniaxial rare-earth ferromagnet deep within the quantum regime, so that domain wall motion, and the associated hysteresis, is initiated by quantum nucleation, which then grows into large-scale domain wall motion, which is observable as an unusual form of Barkhausen noise. We observe noncritical behavior in the resulting avalanche dynamics that only can be explained by going beyond traditional renormalization group methods or classical domain wall models. We find that this "quantum Barkhausen noise" exhibits two distinct mechanisms for domain wall movement, each of which is quantum-mechanical, but with very different dependences on an external magnetic field applied transverse to the spin (Ising) axis. These observations can be understood in terms of the correlated motion of pairs of domain walls, nucleated by cotunneling of plaquettes (sections of domain wall), with plaquette pairs correlated by dipolar interactions; this correlation is suppressed by the transverse field. Similar macroscopic correlations may be expected to appear in the hysteresis of other systems with long-range interactions.

2.
Nat Commun ; 13(1): 2301, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484351

RESUMO

The 2-dimensional layered oxide material SrCu2(BO3)2, long studied as a realization of the Shastry-Sutherland spin topology, exhibits a range of intriguing physics as a function of both hydrostatic pressure and magnetic field, with a still debated intermediate plaquette phase appearing at approximately 20 kbar and a possible deconfined critical point at higher pressure. Here, we employ a tunnel diode oscillator (TDO) technique to probe the behavior in the combined extreme conditions of high pressure, high magnetic field, and low temperature. We reveal an extensive phase space consisting of multiple magnetic analogs of the elusive supersolid phase and a magnetization plateau. In particular, a 10 × 2 supersolid and a 1/5 plateau, identified by infinite Projected Entangled Pair States (iPEPS) calculations, are found to rely on the presence of both magnetic and non-magnetic particles in the sea of dimer singlets. These states are best understood as descendants of the full-plaquette phase, the leading candidate for the intermediate phase of SrCu2(BO3)2.

3.
Phys Rev Lett ; 127(20): 207202, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860035

RESUMO

We directly measure the low energy excitation modes of the quantum Ising magnet LiHoF_{4} using microwave spectroscopy. Instead of a single electronic mode, we find a set of collective electronuclear modes, in which the spin-1/2 Ising electronic spins hybridize with the bath of spin-7/2 Ho nuclear spins. The lowest-lying electronuclear mode softens at the approach to the quantum critical point, even in the presence of disorder. This softening is rapidly quenched by a longitudinal magnetic field. Similar electronuclear structures should exist in other spin-based quantum Ising systems.

4.
Sci Rep ; 11(1): 16181, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376722

RESUMO

We investigate the low-temperature complex impedance of disordered insulating thin TiN and NbTiN films in the frequency region 400 Hz-1 MHz in close proximity to the superconductor-insulator transition (SIT). The frequency, temperature, and magnetic field dependencies of the real and imaginary parts of the impedance indicate that in full accord with the theoretical predictions and earlier observations, the films acquire self-induced electronic granularity and become effectively random arrays of superconducting granules coupled via Josephson links. Accordingly, the inductive component of the response is due to superconducting droplets, while the capacitive component results from the effective Josephson junctions capacitances. The impedance crosses over from capacitive to inductive behavior as films go across the transition.

5.
Nat Commun ; 12(1): 2779, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986275

RESUMO

While Mott insulators induced by Coulomb interactions are a well-recognized class of metal-insulator transitions, insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here, we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is removed experimentally, the bulk Hall coefficient reveals four Fermi surfaces of both electron and hole types, sequentially departing the Fermi level with decreasing temperature below the Néel temperature, TN = 227 K. In Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T ~ 10 K << TN. The insulating mechanism parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with Mott insulators and spin density waves, where the electronic gap opens above and at TN, respectively.

6.
Rev Sci Instrum ; 91(11): 113902, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261445

RESUMO

The application of giga-Pascal scale pressures has been widely used as a tool to systematically tune the properties of materials in order to access such general questions as the driving mechanisms underlying phase transitions. While there is a large and growing set of experimental tools successfully applied to high-pressure environments, the compatibility between diamond anvil cells and optical probes offers further potential for examining lattice, magnetic, and electronic states, along with their excitations. Here, we describe the construction of a highly efficient optical Raman spectrometer that enables measurements of magnetic excitations in single crystals down to energies of 9 cm-1 (1.1 meV or 13 K) at cryogenic temperatures and under pressures of tens of GPa.

7.
Nat Commun ; 11(1): 216, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924787

RESUMO

The phenomena of antisymmetric magnetoresistance and the planar Hall effect are deeply entwined with ferromagnetism. The intrinsic magnetization of the ordered state permits these unusual and rarely observed manifestations of Onsager's theorem when time reversal symmetry is broken at zero applied field. Here we study two classes of ferromagnetic materials, rare-earth magnets with high intrinsic coercivity and antiferromagnetic pyrochlores with strongly-pinned ferromagnetic domain walls, which both exhibit antisymmetric magnetoresistive behavior. By mapping out the peculiar angular variation of the antisymmetric galvanomagnetic response with respect to the relative alignments of the magnetization, magnetic field, and electrical current, we experimentally distinguish two distinct underlying microscopic mechanisms: namely, spin-dependent scattering of a Zeeman-shifted Fermi surface and anomalous electron velocities. Our work demonstrates that the anomalous electron velocity physics typically associated with the anomalous Hall effect is prevalent beyond the ρxy(Hz) channel, and should be understood as a part of the general galvanomagnetic behavior.

8.
Nat Commun ; 10(1): 4001, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488819

RESUMO

Quantum states cohere and interfere. Atoms arranged imperfectly in a solid rarely display these properties. Here we demonstrate an exception in a disordered quantum magnet that divides itself into nearly isolated subsystems. We probe these coherent spin clusters by driving the system nonlinearly and measuring the resulting hole in the linear spectral response. The Fano shape of the hole encodes the incoherent lifetime as well as coherent mixing of the localized excitations. For the Ising magnet LiHo0.045Y0.955F4, the quality factor Q for spectral holes can be as high as 100,000. We tune the dynamics by sweeping the Fano mixing parameter q through zero via the ac pump amplitude as well as a dc transverse field. The zero crossing of q is associated with a dissipationless response at the drive frequency. Identifying localized two-level systems in a dense and disordered magnet advances the search for qubit platforms emerging from strongly interacting, many-body systems.

9.
Proc Natl Acad Sci U S A ; 116(23): 11201-11206, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30975759

RESUMO

The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects, unusual topological band structures, and inhomogeneities that lead to wandering current paths can induce a cross-over from quadratic to linear MR with increasing magnetic field. Here we explore a series of metallic charge- and spin-density-wave systems that exhibit extremely large positive linear MR. By contrast to other linear MR mechanisms, this effect remains robust down to miniscule magnetic fields of tens of Oersted at low temperature. We frame an explanation of this phenomenon in a semiclassical narrative for a broad category of materials with partially gapped Fermi surfaces due to density waves.

10.
Nat Commun ; 7: 11956, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320787

RESUMO

An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.

11.
Rev Sci Instrum ; 86(9): 093901, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429451

RESUMO

We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.

12.
J Phys Condens Matter ; 27(29): 296001, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26154501

RESUMO

The geometrically frustrated triangular antiferromagnet Gadolinium Gallium Garnet (Gd3Ga5O12 or GGG) exhibits a rich mix of short-range order and isolated quantum states. We investigate the effects of up to 1% neodymium substitution for gallium on the ac magnetic response at temperatures below 1 K in both the linear and nonlinear regimes. Substitutional disorder actually drives the system toward a more perfectly frustrated state, apparently compensating for the effects of imperfect gadolinium/gallium stoichiometry, while at the same time more closely demarcating the boundaries of isolated, coherent clusters composed of hundreds of spins. Optical measurements of the local Nd environment substantiate the picture of an increased frustration index with doping.

14.
Proc Natl Acad Sci U S A ; 111(40): 14372-7, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246541

RESUMO

Quantum spins placed on the corners of a square lattice can dimerize and form singlets, which then can be transformed into a magnetic state as the interactions between dimers increase beyond threshold. This is a strictly 2D transition in theory, but real-world materials often need the third dimension to stabilize long-range order. We use high pressures to convert sheets of Cu(2+) spin 1/2 dimers from local singlets to global antiferromagnet in the model system SrCu2(BO3)2. Single-crystal neutron diffraction measurements at pressures above 5 GPa provide a direct signature of the antiferromagnetic ordered state, whereas high-resolution neutron powder and X-ray diffraction at commensurate pressures reveal a tilting of the Cu spins out of the plane with a critical exponent characteristic of 3D transitions. The addition of anisotropic, interplane, spin-orbit terms in the venerable Shastry-Sutherland Hamiltonian accounts for the influence of the third dimension.

15.
Rev Sci Instrum ; 85(3): 033901, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689594

RESUMO

We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field-Pressure-Temperature parameter space.

16.
Proc Natl Acad Sci U S A ; 111(10): 3689-94, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567389

RESUMO

The degree of contact between a system and the external environment can alter dramatically its proclivity to quantum mechanical modes of relaxation. We show that controlling the thermal coupling of cubic-centimeter-sized crystals of the Ising magnet LiHo(x)Y(1-x)F4 to a heat bath can be used to tune the system between a glassy state dominated by thermal excitations over energy barriers and a state with the hallmarks of a quantum spin liquid. Application of a magnetic field transverse to the Ising axis introduces both random magnetic fields and quantum fluctuations, which can retard and speed the annealing process, respectively, thereby providing a mechanism for continuous tuning between the destination states. The nonlinear response of the system explicitly demonstrates quantum interference between internal and external relaxation pathways.


Assuntos
Engenharia Química/métodos , Imãs/química , Modelos Químicos , Teoria Quântica , Temperatura
17.
Proc Natl Acad Sci U S A ; 110(9): 3287-92, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401555

RESUMO

Materials with strong correlations are prone to spin and charge instabilities, driven by Coulomb, magnetic, and lattice interactions. In materials that have significant localized and itinerant spins, it is not obvious which will induce order. We combine electrical transport, X-ray magnetic diffraction, and photoemission studies with band structure calculations to characterize successive antiferromagnetic transitions in GdSi. GdSi has both sizable local moments and a partially nested Fermi surface, without confounding contributions from orbital effects. We identify a route to incommensurate order where neither type of moment dominates, but is rooted in cooperative feedback between them. The nested Fermi surface of the itinerant electrons induces strong interactions between local moments at the nesting vector, whereas the ordered local moments in turn provide the necessary coupling for a spin-density wave to form among the itinerant electrons. This mechanism echoes the cooperative interactions between electrons and ions in charge-density-wave materials, and should be germane across a spectrum of transition-metal and rare-earth intermetallic compounds.

18.
Rev Sci Instrum ; 84(1): 013901, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387662

RESUMO

Designing an apparatus for experiments that operate deep into the milliKelvin regime requires a careful selection of materials and construction techniques, and often entails balancing mutually contradictory requirements. In the case of magnetic susceptibility measurements, this involves choosing materials that realize both high thermal conductivity for good heat sinking and low electrical conductivity for minimal eddy-current heating. A coil mounting system with a completely nonmetallic construction, achieved through the use of a sapphire skeleton and a machined carbon-fiber body, resolves this dilemma. This system permits the use of large ac magnetic field amplitudes at kHz frequencies and above, opening the door to studies of the nonlinear dynamics of a wide variety of magnetic systems that were previously inaccessible.

19.
Proc Natl Acad Sci U S A ; 109(7): 2286-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308373

RESUMO

The Shasty-Sutherland model, which consists of a set of spin 1/2 dimers on a 2D square lattice, is simple and soluble but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated, gapped excitations and collective, ordered ground states. We compress the model Shastry-Sutherland material, SrCu(2)(BO(3))(2), in a diamond anvil cell at cryogenic temperatures to continuously tune the coupling energies and induce changes in state. High-resolution X-ray measurements exploit what emerges as a remarkably strong spin-lattice coupling to both monitor the magnetic behavior and the absence or presence of structural discontinuities. In the low-pressure spin-singlet regime, the onset of magnetism results in an expansion of the lattice with decreasing temperature, which permits a determination of the pressure-dependent energy gap and the almost isotropic spin-lattice coupling energies. The singlet-triplet gap energy is suppressed continuously with increasing pressure, vanishing completely by 2 GPa. This continuous quantum phase transition is followed by a structural distortion at higher pressure.

20.
Proc Natl Acad Sci U S A ; 107(7): 2797-800, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133728

RESUMO

The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above.


Assuntos
Compostos Férricos/química , Dureza , Temperatura , Imãs , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA