Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28980, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633643

RESUMO

Solid waste management is one of the biggest challenges of the current era. The combustible fractions in the waste stream turn out to be a good energy source if converted into refuse-derived fuel. Researchers worldwide are successfully converting it into fuel. However, certain challenges are associated with its application in gasifiers, boilers, etc. to co-fire it with coal. These include high moisture content, low calorific value, and difficulty to transport and store. The present study proposed torrefaction as a pretreatment of the waste by heating it in the range of 200 °C-300 °C in the absence of oxygen at atmospheric pressure. The combustible fraction from the waste stream consisting of wood, textile, paper, carton, and plastics termed as mixed waste was collected and torrefied at 225 °C, 250 °C, 275 °C, and 300 °C for 15 and 30 min each. It was observed that the mass yield and energy yield decreased to 45% and 62.96% respectively, but the energy yield tended to increase by the ratio of 1.39. Proximate analysis showed that the moisture content and volatile matter decreased for torrefied samples, whereas the ash content and fixed carbon content increased. Similarly, the elemental analysis revealed that the carbon content increased around 23% compared to raw samples with torrefaction contrary to hydrogen and oxygen, which decreased. Moreover, the higher heating value (HHV) of the torrefied samples increased around 1.3 times as compared to the raw sample. This pretreatment can serve as an effective solution to the current challenges and enhance refuse-derived fuel's fuel properties.

2.
Environ Pollut ; 341: 122889, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972679

RESUMO

Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Reprodutibilidade dos Testes , Poluição da Água
3.
Heliyon ; 9(11): e22031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045119

RESUMO

In this study, the non-edible Chinaberry Seed Oil (CBO) is converted into biodiesel using microwave assisted transesterification. The objective of this effort is to maximize the biodiesel yield by optimizing the operating parameters, such as catalyst concentration, methanol-oil ratio, reaction speed, and reaction time. The designed setup provides a controlled and effective approach for turning CBO into biodiesel, resulting in encouraging yields and reduced reaction times. The experimental findings reveal the optimal parameters for the highest biodiesel yield (95 %) are a catalyst concentration of 1.5 w/w, a methanol-oil ratio of 6:1 v/v, a reaction speed of 400 RPM, and a reaction period of 3 min. The interaction of the several operating parameters on biodiesel yield has been investigated using two methodologies: Response Surface Methodology (RSM) and Artificial Neural Network (ANN). RSM provides better modeling of parameter interaction, while ANN exhibits lower comparative error when predicting biodiesel yield based on the reaction parameters. The percentage improvement in prediction of biodiesel yield by ANN is found to be 12 % as compared to RSM. This study emphasizes the merits of both the approaches for biodiesel yield optimization. Furthermore, the scaling up this microwave-assisted transesterification system for industrial biodiesel production has been proposes with focus on its economic viability and environmental effects.

4.
Chemosphere ; 343: 140255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741367

RESUMO

The interplay between CO2 input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate. Results from this study reveal opposing effects from CO2 input and light intensity on the culture solution pH and ultimately microalgae growth rate. Excessive CO2 concentration can inhibit microalgae growth due to acidification caused by CO2 dissolution. While increasing light intensity can increase pH because the carboxylation process consumes photons and transfers hydrogen ions into the cell. This reaction is catalysed by the enzyme RuBisCO, which functions optimally within a specific pH range. By balancing CO2 input and light intensity, high microalgae growth rate and carbon capture could be achieved. Under the intermittent CO2 transfer mode, at the optimal condition of 850 mg/L CO2 input and 1089 µmol/m2/s light intensity, leading to the highest microalgae growth rate and carbon fixation of 4.2 g/L as observed in this study.

5.
Waste Manag ; 80: 435-449, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30455026

RESUMO

Recycling waste cooking vegetable oils by reclaiming and using these oils as biodiesel feedstocks is one of the promising solutions to address global energy demands. However, producing these biodiesels poses a significant challenge because of their poor physicochemical properties due the high free fatty acid content and impurities present in the feedstock, which will reduce the biodiesel yields. Hence, this study implemented the following strategy in order to address this issue: (1) 70 vol% of waste cooking vegetable oil blended with 30 vol% of Calophyllum inophyllum oil named as WC70CI30 used to alter its properties, (2) a three-stage process (degumming, esterification, and transesterification) was conducted which reduces the free fatty acid content and presence of impurities, and (3) the transesterification process parameters (methanol/oil ratio, reaction temperature, reaction time, and catalyst concentration) were optimized using response surface methodology in order to increase the biodiesel conversion yield. The results show that the WC70CI30 biodiesel has favourable physicochemical properties, good cold flow properties, and high oxidation stability (22.4 h), which fulfil the fuel specifications stated in the ASTM D6751 and EN 14214 standards. It found that the WC70CI30 biodiesel has great potential as a diesel substitute without the need for antioxidants and pour point depressants.


Assuntos
Biocombustíveis , Verduras , Beleza , Catálise , Culinária , Esterificação , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA