Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2309843120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812725

RESUMO

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.


Assuntos
Dopamina , Vesículas Sinápticas , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Axônios/metabolismo , Mesencéfalo/metabolismo
2.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609166

RESUMO

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a novel population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.

3.
Elife ; 82019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663854

RESUMO

Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active-zone proteins and SV clusters. In the present work, we uncover a mechanism mediating an increased SV clustering through the interaction of VGLUT1 second proline-rich domain, endophilinA1 and intersectin1. This strengthening of SV clusters results in a combined reduction of axonal SV super-pool size and miniature excitatory events frequency. Our findings support a model in which clustered vesicles are held together through multiple weak interactions between Src homology three and proline-rich domains of synaptic proteins. In mammals, VGLUT1 gained a proline-rich sequence that recruits endophilinA1 and turns the transporter into a regulator of SV organization and spontaneous release.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glutamatos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Transporte Biológico , Humanos , Camundongos , Camundongos Knockout , Ratos , Proteína Vesicular 1 de Transporte de Glutamato/deficiência
4.
Neuron ; 102(4): 786-800.e5, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31003725

RESUMO

In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Canais de Cálcio/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Exocitose , Ácido Glutâmico/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Mesencéfalo/citologia , Camundongos , Neurônios/metabolismo , Neurotransmissores/metabolismo
5.
Nat Commun ; 9(1): 330, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362376

RESUMO

Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Espectro Autista/metabolismo , Cálcio/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Modelos Animais de Doenças , Eletroencefalografia , Endossomos/patologia , Feminino , Expressão Gênica , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Cultura Primária de Células , Trocadores de Sódio-Hidrogênio/deficiência , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
6.
J Neurosci ; 37(15): 4181-4199, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28314816

RESUMO

The atypical vesicular glutamate transporter type 3 (VGLUT3) is expressed by subpopulations of neurons using acetylcholine, GABA, or serotonin as neurotransmitters. In addition, VGLUT3 is expressed in the inner hair cells of the auditory system. A mutation (p.A211V) in the gene that encodes VGLUT3 is responsible for progressive deafness in two unrelated families. In this study, we investigated the consequences of the p.A211V mutation in cell cultures and in the CNS of a mutant mouse. The mutation substantially decreased VGLUT3 expression (-70%). We measured VGLUT3-p.A211V activity by vesicular uptake in BON cells, electrophysiological recording of isolated neurons, and its ability to stimulate serotonergic accumulation in cortical synaptic vesicles. Despite a marked loss of expression, the activity of the mutated isoform was only minimally altered. Furthermore, mutant mice displayed none of the behavioral alterations that have previously been reported in VGLUT3 knock-out mice. Finally, we used stimulated emission depletion microscopy to analyze how the mutation altered VGLUT3 distribution within the terminals of mice expressing the mutated isoform. The mutation appeared to reduce the expression of the VGLUT3 transporter by simultaneously decreasing the number of VGLUT3-positive synaptic vesicles and the amount of VGLUT3 per synapses. These observations suggested that VGLUT3 global activity is not linearly correlated with VGLUT3 expression. Furthermore, our data unraveled a nonuniform distribution of VGLUT3 in synaptic vesicles. Identifying the mechanisms responsible for this complex vesicular sorting will be critical to understand VGLUT's involvement in normal and pathological conditions.SIGNIFICANCE STATEMENT VGLUT3 is an atypical member of the vesicular glutamate transporter family. A point mutation of VGLUT3 (VGLUT3-p.A211V) responsible for a progressive loss of hearing has been identified in humans. We observed that this mutation dramatically reduces VGLUT3 expression in terminals (∼70%) without altering its function. Furthermore, using stimulated emission depletion microscopy, we found that reducing the expression levels of VGLUT3 diminished the number of VGLUT3-positive vesicles at synapses. These unexpected findings challenge the vision of a uniform distribution of synaptic vesicles at synapses. Therefore, the overall activity of VGLUT3 is not proportional to the level of VGLUT3 expression. These data will be key in interpreting the role of VGLUTs in human pathologies.


Assuntos
Encéfalo/metabolismo , Mutação Puntual/fisiologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
7.
Neuron ; 93(3): 470-472, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28182901

RESUMO

In this issue of Neuron, Ashrafi et al. (2017) show that activity induces translocation of the insulin-regulated glucose transporter GLUT4 to the plasma membrane, where it sustains the ATP production required for synaptic vesicle cycling. However, translocation occurs from presynaptic membranes other than synaptic vesicles and involves a distinct molecular mechanism.


Assuntos
Transportador de Glucose Tipo 4 , Insulina , Transporte Biológico , Membrana Celular , Proteínas Musculares , Neurotransmissores , Vesículas Sinápticas
8.
Neuropharmacology ; 115: 4-9, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27567940

RESUMO

Slow excitatory postsynaptic currents (EPSCs) mediated by metabotropic glutamate receptors (mGlu receptors) have been reported in several neuronal subtypes, but their presence in hippocampal pyramidal neurons remains elusive. Here we find that in CA1 pyramidal neurons a slow EPSC is induced by repetitive stimulation while ionotropic glutamate receptors and glutamate-uptake are blocked whereas it is absent in the VGLUT1 knockout mouse in which presynaptic glutamate is lost, suggesting the slow EPSC is mediated by glutamate activating mGlu receptors. However, it is not inhibited by known mGlu receptor antagonists. These findings suggest that this slow EPSC is mediated by a novel mGlu receptor, and that it may be involved in neurological diseases associated with abnormal high-concentration of extracellular glutamate. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Animais , Benzoatos/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Proteína Vesicular 1 de Transporte de Glutamato/antagonistas & inibidores
9.
Neuron ; 90(4): 768-80, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27133463

RESUMO

The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles.


Assuntos
Ácido Glutâmico/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Regulação Alostérica , Animais , Transporte Biológico/fisiologia , Neurotransmissores/metabolismo , Oócitos/metabolismo , Prótons
10.
J Neurosci ; 35(28): 10168-71, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180193

RESUMO

Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT: It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate.


Assuntos
Ácido Aspártico/metabolismo , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Ácido Aspártico/farmacologia , Região CA1 Hipocampal/citologia , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Proteína Vesicular 1 de Transporte de Glutamato/genética
11.
Eur J Neurosci ; 37(10): 1631-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23581566

RESUMO

Synaptic vesicles (SVs) from excitatory synapses carry vesicular glutamate transporters (VGLUTs) that fill the vesicles with neurotransmitter. Although the essential function of VGLUTs as glutamate transporters has been well established, the evidence for additional cell-biological functions is more controversial. Both VGLUT1 and VGLUT2 disruptions in mice result in a reduced number of SVs away from release sites, flattening of SVs, and the appearance of tubular structures. Therefore, we analysed the morphology, biochemical composition and trafficking of SVs at synapses of VGLUT1(-/-) mice in order to test for a function of VGLUTs in the formation or clustering of SVs. Analyses with high-pressure freezing immobilisation and electron tomography pointed to a role of VGLUT1 transport function in the tonicity of excitatory SVs, explaining the aldehyde-induced flattening of SVs observed in VGLUT1(-/-) synapses. We confirmed the steep reduction in the number of SVs previously observed in VGLUT1(-/-) presynaptic terminals, but did not observe accumulation of endocytotic intermediates. Furthermore, SV proteins of adult VGLUT1(-/-) mouse brain tissue were expressed at normal levels in all subcellular fractions, suggesting that they were not displaced to another organelle. We thus assessed the mobility of the recently documented superpool of SVs. Synaptobrevin2-enhanced green fluorescent protein time lapse experiments revealed an oversized superpool of SVs in VGLUT1(-/-) neurons. Our results support the idea that, beyond glutamate loading, VGLUT1 enhances the tonicity of excitatory SVs and stabilises SVs at presynaptic terminals.


Assuntos
Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/genética
12.
J Neurosci ; 33(10): 4434-55, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467360

RESUMO

The concept of a tripartite synapse including a presynaptic terminal, a postsynaptic spine, and an astrocytic process that responds to neuronal activity by fast gliotransmitter release, confers to the electrically silent astrocytes an active role in information processing. However, the mechanisms of gliotransmitter release are still highly controversial. The reported expression of all three vesicular glutamate transporters (VGLUT1-3) by astrocytes suggests that astrocytes, like neurons, may release glutamate by exocytosis. However, the demonstration of astrocytic VGLUT expression is largely based on immunostaining, and the possibility of nonspecific labeling needs to be systematically addressed. We therefore examined the expression of VGLUT1-3 in astrocytes, both in culture and in situ. We used Western blots and single-vesicle imaging by total internal reflection fluorescence microscopy in live cultured astrocytes, and confocal microscopy, at the cellular level in cortical, hippocampal, and cerebellar brain slices, combined with quantitative image analysis. Control experiments were systematically performed in cultured astrocytes using wild-type, VGLUT1-3 knock-out, VGLUT1(Venus) knock-in, and VGLUT2-EGFP transgenic mice. In fixed brain slices, we quantified the degree of overlap between VGLUT1-3 and neuronal or astrocytic markers, both in an object-based manner using fluorescence line profiles, and in a pixel-based manner using dual-color scatter plots followed by the calculation of Pearson's correlation coefficient over all pixels with intensities significantly different from background. Our data provide no evidence in favor of the expression of any of the three VGLUTs by gray matter protoplasmic astrocytes of the primary somatosensory cortex, the thalamic ventrobasal nucleus, the hippocampus, and the cerebellum.


Assuntos
Astrócitos/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Proteína 4 Homóloga a Disks-Large , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Guanilato Quinases/metabolismo , Hipocampo/citologia , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/classificação , Proteínas Vesiculares de Transporte de Glutamato/genética
13.
J Neurosci ; 31(43): 15544-59, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031900

RESUMO

The vesicular glutamate transporter VGLUT1 loads synaptic vesicles with the neurotransmitter glutamate and thereby determines glutamate release at many synapses in the mammalian brain. Due to its function and selective localization, VGLUT1 is one of the most specific markers for glutamatergic synaptic vesicles. It has been used widely to identify glutamatergic synapses, and its expression levels are tightly correlated with changes in quantal size, modulations of synaptic plasticity, and corresponding behaviors. We generated a fluorescent VGLUT1(Venus) knock-in mouse for the analysis of VGLUT1 and glutamatergic synaptic vesicle trafficking. The mutation does not affect glutamatergic synapse function, and thus the new mouse model represents a universal tool for the analysis of glutamatergic transmitter systems in the forebrain. Previous studies demonstrated synaptic vesicle exchange between terminals in vitro. Using the VGLUT1(Venus) knock-in, we show that synaptic vesicles are dynamically shared among boutons in the cortex of mice in vivo. We provide a detailed analysis of synaptic vesicle sharing in vitro, and show that network homeostasis leads to dynamic scaling of synaptic VGLUT1 levels.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Luminescentes/metabolismo , Neurônios/citologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Vesículas Sinápticas/fisiologia , Animais , Proteínas de Bactérias/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Recuperação de Fluorescência Após Fotodegradação/métodos , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA