Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0284953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540685

RESUMO

Ocean dynamics initiate the structure of nutrient income driving primary producers, and these, in turn, shape the distribution of subsequent trophic levels until the whole pelagic community reflects the physicochemical structure of the ocean. Despite the importance of bottom-up structuring in pelagic ecosystems, fine-scale studies of biophysical interactions along depth are scarce and challenging. To improve our understanding of such relationships, we analyzed the vertical structure of key oceanographic variables along with the distribution of acoustic biomass from multi-frequency acoustic data (38, 70, and 120 kHz) as a reference for pelagic fauna. In addition, we took advantage of species distribution databases collected at the same time to provide further interpretation. The study was performed in the Southwestern Tropical Atlantic of northeast Brazil in spring 2015 and autumn 2017, periods representative of canonical spring and autumn conditions in terms of thermohaline structure and current dynamics. We show that chlorophyll-a, oxygen, current, and stratification are important drivers for the distribution of sound scattering biota but that their relative importance depends on the area, the depth range, and the diel cycle. Prominent sound scattering layers (SSLs) in the epipelagic layer were associated with strong stratification and subsurface chlorophyll-a maximum. In areas where chlorophyll-a maxima were deeper than the peak of stratifications, SSLs were more correlated with stratification than subsurface chlorophyll maxima. Dissolved oxygen seems to be a driver in locations where lower oxygen concentration occurs in the subsurface. Finally, our results suggest that organisms seem to avoid strong currents core. However, future works are needed to better understand the role of currents on the vertical distribution of organisms.


Assuntos
Clorofila , Ecossistema , Clorofila A , Biomassa , Brasil , Oceano Atlântico
2.
PLoS One ; 15(5): e0231574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374742

RESUMO

The phylogeography of the holoplanktonic chaetognath Flaccisagitta enflata was investigated in the Tropical Western Atlantic (TWA). Considering the cosmopolitan range of this species and the fact that its entire life cycle is planktonic, the central hypothesis of this study is that F. enflata exhibits connectivity due to its high dispersal capacity, forming a panmictic population among the study sites. The evaluated areas included neritic (Port of Recife-PR, and Tamandaré - TA) and oceanic (Fernando de Noronha Archipelago-FN, Rocas Atoll-RA, Guará seamount-GS and Saint Peter and Saint Paul's Archipelago-SPSPA) locations of the Brazilian Blue Amazon. We used COI gene sequences as molecular marker. Partial sequences (425 bp) were obtained for 116 specimens and employed to reconstruct the phylogeny, build an haplotype network, evaluate gene flow through a migration model, and estimate diversity indices, population structuring and demographic history. High levels of haplotype diversity (mean: 0.98) and moderate to high levels of nucleotide diversity (mean: 0.023) were observed. The phylogeny and the haplotype network topologies showed some geographic clustering, indicating local structuring in GS and PR. This finding was supported by the AMOVA high global Φst (0.033, significant) and some pairwise Φst comparisons (7 out of 15 were significantly >0). Significant differences suggested lower levels of connectivity when GS population was compared to those of FN and SPSPA; as well as when TA was compared to FN. These results might be related to particularities of the oceanic dynamics which rules the TWA, sustaining such dissimilarities. Structuring was also observed between PR and all oceanic locations. We hypothesize that the topography of the port inlet, enclosured by a reef barrier, may constrain the water turnover ratio and thus migration rates of F. enflata in the TWA. Accordingly, Migrate-N yielded a four metapopulations model (PR ⇌ TA ⇌ SPSPA+FN ⇌ GS+RA) as the best (highest probability; ~0.90) to represent the structuring of F. enflata in the TWA. Therefore, the null hypothesis of one randomly mating population cannot be accepted. The demographic evaluation demonstrated that the neutral hypothesis of stable populations may not be rejected for most of the locations. This work is the start point to broaden the knowledge on the phylogeography and population genetic structure of a numerically dominant species in the Western Atlantic, with key role in the marine trophic web.


Assuntos
Variação Genética , Plâncton/classificação , Plâncton/genética , Animais , Oceano Atlântico , Brasil , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Haplótipos , Filogenia , Filogeografia , Plâncton/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA