Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 46: 104066, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552814

RESUMO

Balanoposthitis can affect men in immunocompromised situations, such as HIV infection and diabetes. The main associated microorganism is Candida albicans, which can cause local lesions, such as the development of skin cracks associated with itching. As an alternative to conventional treatment, there is a growing interest in the photodynamic inactivation (PDI). It has been shown that the association of photosensitizers with metallic nanoparticles may improve the effectiveness of PDI via plasmonic effect. We have recently shown that the association of methylene blue (MB), a very known photosensitizer, with silver prismatic nanoplatelets (AgNPrs) improved PDI of a resistant strain of Staphylococcus aureus. To further investigate the experimental conditions involved in PDI improvement, in the present study, we studied the effect of MB concentration associated with AgNPrs exploring spectral analysis, zeta potential measurements, and biological assays, testing the conjugated system against C. albicans isolated from a resistant strain of balanoposthitis. The AgNPrs were synthesized through silver anisotropic seed growth induced by the anionic stabilizing agent poly(sodium 4-styrenesulfonate) and showed a plasmon band fully overlapping the MB absorption band. MB and AgNPrs were conjugated through electrostatic association and three different MB concentrations were tested in the nanosystems. Inactivation using red LED light (660 nm) showed a dose dependency in respect to the MB concentration in the conjugates. Using the highest MB concentration (100 µmol⋅L-1) with AgNPr, it was possible to completely inactivate the microorganisms upon a 2 min irradiation exposure. Analyzing optical changes in the conjugates we suggest that these results indicate that AgNPrs are enhancers of MB photodynamic action probably by a combined mechanism of plasmonic effect and reduction of MB dimerization. Therefore, MBAgNPrs can be considered a suitable choice to be applied in PDI of resistant microorganisms.

2.
BMC Genomics ; 25(1): 14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166730

RESUMO

BACKGROUND: Mapping expression quantitative trait loci (eQTLs) in skeletal muscle tissue in pigs is crucial for understanding the relationship between genetic variation and phenotypic expression of carcass traits in meat animals. Therefore, the primary objective of this study was to evaluate the impact of different sets of single nucleotide polymorphisms (SNP), including scenarios removing SNPs pruned for linkage disequilibrium (LD) and SNPs derived from SNP chip arrays and RNA-seq data from liver, brain, and skeletal muscle tissues, on the identification of eQTLs in the Longissimus lumborum tissue, associated with carcass and body composition traits in Large White pigs. The SNPs identified from muscle mRNA were combined with SNPs identified in the brain and liver tissue transcriptomes, as well as SNPs from the GGP Porcine 50 K SNP chip array. Cis- and trans-eQTLs were identified based on the skeletal muscle gene expression level, followed by functional genomic analyses and statistical associations with carcass and body composition traits in Large White pigs. RESULTS: The number of cis- and trans-eQTLs identified across different sets of SNPs (scenarios) ranged from 261 to 2,539 and from 29 to 13,721, respectively. Furthermore, 6,180 genes were modulated by eQTLs in at least one of the scenarios evaluated. The eQTLs identified were not significantly associated with carcass and body composition traits but were significantly enriched for many traits in the "Meat and Carcass" type QTL. The scenarios with the highest number of cis- (n = 304) and trans- (n = 5,993) modulated genes were the unpruned and LD-pruned SNP set scenarios identified from the muscle transcriptome. These genes include 84 transcription factor coding genes. CONCLUSIONS: After LD pruning, the set of SNPs identified based on the transcriptome of the skeletal muscle tissue of pigs resulted in the highest number of genes modulated by eQTLs. Most eQTLs are of the trans type and are associated with genes influencing complex traits in pigs, such as transcription factors and enhancers. Furthermore, the incorporation of SNPs from other genomic regions to the set of SNPs identified in the porcine skeletal muscle transcriptome contributed to the identification of eQTLs that had not been identified based on the porcine skeletal muscle transcriptome alone.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos/genética , Animais , Fenótipo , Músculo Esquelético/metabolismo , Estudo de Associação Genômica Ampla , Composição Corporal/genética
3.
Funct Integr Genomics ; 23(1): 73, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867299

RESUMO

Pork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq. The addition of FO in the diet of pigs led to intramuscular lipid with a higher FA profile composition of C20:5 n-3, C22:6 n-3, and SFA (C16:0 and C18:0). Blood parameters for the FO group showed lower cholesterol and HDL content compared with CO and SOY groups. Skeletal muscle transcriptome analyses revealed 65 differentially expressed genes (DEG, FDR 10%) between CO vs SOY, and 32 DEG for CO vs FO, and 531 DEG for SOY vs FO comparison. Several genes, including AZGP1, PDE3B, APOE, PLIN1, and LIPS, were found to be down-regulated in the diet of the SOY group compared to the FO group. The enrichment analysis revealed DEG involved in lipid metabolism, metabolic diseases, and inflammation between the oil groups, with specific gene functions in each group and altered blood parameters. The results provide mechanisms to help us understand the behavior of genes according to fatty acids.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Animais , Masculino , Suínos , Ácidos Graxos , Inflamação , Músculo Esquelético , Óleo de Soja
4.
BMC Genomics ; 24(1): 91, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855067

RESUMO

BACKGROUND: The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS: Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION: The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.


Assuntos
Óleo de Soja , Transcriptoma , Animais , Masculino , Encéfalo , Cálcio , Dieta/veterinária , Ácidos Graxos , Óleo de Soja/farmacologia , Suínos
5.
Front Genet ; 14: 1053021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816031

RESUMO

Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.

6.
Animals (Basel) ; 12(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35804531

RESUMO

The aim of this study was to identify the differentially expressed genes (DEG) from the skeletal muscle and liver samples of animal models for metabolic diseases in humans. To perform the study, the fatty acid (FA) profile and RNA sequencing (RNA-Seq) data of 35 samples of liver tissue (SOY1.5, n = 17 and SOY3.0, n = 18) and 36 samples of skeletal muscle (SOY1.5, n = 18 and SOY3.0, n = 18) of Large White pigs were analyzed. The FA profile of the tissues was modified by the diet, mainly those related to monounsaturated (MUFA) and polyunsaturated (PUFA) FA. The skeletal muscle transcriptome analysis revealed 45 DEG (FDR 10%), and the functional enrichment analysis identified network maps related to inflammation, immune processes, and pathways associated with oxidative stress, type 2 diabetes, and metabolic dysfunction. For the liver tissue, the transcriptome profile analysis revealed 281 DEG, which participate in network maps related to neurodegenerative diseases. With this nutrigenomics study, we verified that different levels of soybean oil in the pig diet, an animal model for metabolic diseases in humans, affected the transcriptome profile of skeletal muscle and liver tissue. These findings may help to better understand the biological mechanisms that can be modulated by the diet.

7.
Sci Rep ; 12(1): 10318, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725871

RESUMO

Dietary fatty acids (FA) are components of the lipids, which contribute to membrane structure, energy input, and biological functions related to cellular signaling and transcriptome regulation. However, the consumers still associate dietary FA with fat deposition and increased occurrence of metabolic diseases such as obesity and atherosclerosis. Previous studies already demonstrated that some fatty acids are linked with inflammatory response, preventing metabolic diseases. To better understand the role of dietary FA on metabolic diseases, for the first time, a study to identify key transcription factors (TF) involved in lipid metabolism and inflammatory response by transcriptome analysis from liver samples of animal models was performed. The key TF were identified by functional enrichment analysis from the list of differentially expressed genes identified in liver samples between 35 pigs fed with 1.5% or 3.0% soybean oil. The functional enrichment analysis detected TF linked to lipid homeostasis and inflammatory response, such as RXRA, EGFR, and SREBP2 precursor. These findings demonstrated that key TF related to lipid metabolism could be modulated by dietary inclusion of soybean oil. It could contribute to nutrigenomics research field that aims to elucidate dietary interventions in animal and human health, as well as to drive food technology and science.


Assuntos
Doenças Metabólicas , Óleo de Soja , Animais , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Óleo de Soja/metabolismo , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA