Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemosphere ; 308(Pt 3): 136522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150486

RESUMO

Antibiotics, such as oxolinic acid (OXA), in aquaculture effluents contribute to the dissemination of antimicrobial resistance, which makes it urgent to develop efficient and sustainable processes for their removal. Aiming a photocatalytic degradation under solar radiation, different carbon quantum dots (CQDs) were produced in this work through a bottom-up hydrothermal methodology and incorporated into TiO2 by a simple calcination method. A total of thirteen materials were synthesized and tested for OXA photocatalytic removal from synthetic and real matrices. Among them, CQDs produced with citric acid and incorporated into TiO2 at 4% (w/w) (TiO2/CQDs-CA 4% (w/w)) were the most efficient photocatalysts, providing an OXA half-life time (t1/2) decrease of 91%, 79% and 85% in phosphate buffer solution (PBS), synthetic sea salts (SSS) and brackish aquaculture effluent (BAE), respectively. Therefore, the herein synthesized TiO2/CQDs-CA 4% (w/w) composites have shown to be promising materials for a sustainable solar-driven removal of antibiotics from aquaculture effluents.


Assuntos
Ácido Oxolínico , Pontos Quânticos , Antibacterianos , Aquicultura , Carbono , Catálise , Ácido Cítrico , Fosfatos , Fotólise , Sais , Titânio
2.
J Environ Manage ; 313: 115030, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417811

RESUMO

In the present study, waste-based biochar functionalized with titanium dioxide (TiO2) and afterwards magnetized by an ex-situ approach, defined as synthetic photosensitizer (SPS), was explored for the photocatalytic degradation of sulfadiazine (SDZ), an antibiotic widely used in the aquaculture industry, under solar irradiation. The use of the SPS enhanced the photodegradation efficiency, with a half-life time (t1/2) reduction from 12.2 ± 0.1 h (without SPS) to 5.6 ± 0.4 h. The applied magnetization procedure allowed to obtain a SPS with good reusability for SDZ photodegradation even after five consecutive cycles. To evaluate the effects on marine bivalves of SDZ, before and after photodegradation and in presence or absence of the SPS, a typical bioindicator species, the mussel Mytilus galloprovincialis, was used and different biochemical markers were analysed. Results obtained indicated that the exposure to SDZbefore irradiation, both in absence and presence of SPS, caused an increase in mussels' metabolism and defence mechanisms, evidencing great biochemical impacts. However, after irradiation (in the absence and presence of SPS), biochemical responses were similar to those observed in organisms exposed to control conditions, without SDZ. Therefore, this work provided a promising eco-friendly treatment for the removal of SDZ from aquaculture effluents.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Carbono , Fenômenos Magnéticos , Mytilus/metabolismo , Fotólise , Sulfadiazina , Titânio , Poluentes Químicos da Água/análise
3.
Toxics ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34941763

RESUMO

In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‱, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ's half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.

4.
Toxics ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437512

RESUMO

Aquacultures are a sector facing a huge development: farmers usually applying antibiotics to treat and/or prevent diseases. Consequently, effluents from aquaculture represent a source of antibiotics for receiving waters, where they pose a potential threat due to antimicrobial resistance (AMR) induction. This has recently become a major concern and it is expectable that regulations on antibiotics' discharge will be established in the near future. Therefore, it is urgent to develop treatments for their removal from wastewater. Among the different possibilities, photodegradation under solar radiation may be a sustainable option. Thus, this review aims at providing a survey on photolysis and photocatalysis in view of their application for the degradation of antibiotics from aquaculture wastewater. Experimental facts, factors affecting antibiotics' removal and employed photocatalysts were hereby addressed. Moreover, gaps in this research area, as well as future challenges, were identified.

5.
J Environ Manage ; 294: 112937, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119993

RESUMO

Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO2) composite materials on the photodegradation of two antibiotics widely used in aquaculture (sulfadiazine (SDZ) and oxolinic acid (OXA)) was assessed. Four materials were synthesized: BCMag (magnetized BC), BCMag_TiO2 (BCMag functionalized with TiO2), BC_TiO2_MagIn and BC_TiO2_MagEx (BC functionalized with TiO2 and afterwards magnetized by in-situ and ex-situ approaches, respectively). SDZ half-life time (t1/2) noticeably decreased 3.9 and 3.4 times in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively. In the case of OXA, even though differences were not so substantial, the produced photocatalysts also allowed for a decrease in t1/2 (2.6 and 1.7 times, in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively). Overall, the here synthesized BC/TiO2 magnetic nanocomposites through a circular economy process are promising photocatalysts for a sustainable solar-driven removal of antibiotics from aquaculture effluents.


Assuntos
Antibacterianos , Nanocompostos , Aquicultura , Catálise , Carvão Vegetal , Luz Solar , Titânio
6.
Sci Total Environ ; 749: 141661, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33370895

RESUMO

Quinolones, such as oxolinic acid (OXA), are antimicrobials commonly used in aquaculture. Thus, its presence in the aquatic environment surrounding aquaculture facilities is quite easy to understand. When present in aquatic environment, pharmaceuticals may be subjected to several attenuation processes that can influence their persistence. Photodegradation, particularly for antibiotics, can have significant importance since these compounds may be resistant to microbial degradation. OXA photodegradation studies reported in literature are very scarce, especially using aquaculture waters, but are markedly important for an appropriate risk assessment. Results hereby presented showed a decrease on photodegradation rate constant from 0.70 ± 0.02 h-1 in ultrapure water to 0.42 ± 0.01 h-1 in freshwater. The decrease on photodegradation rate constant was even more pronounced when brackish water was used (0.172 ± 0.003 h-1). In order to understand which factors contributed to the observed behaviour, environmental factors, such as natural organic matter and salinity, were studied. Results demonstrated that dissolved organic matter (DOM) may explain the decrease of OXA photodegradation observed in freshwater. However, a very sharp decrease of OXA photodegradation was observed in solutions containing NaCl and in synthetic sea salts, which explained the higher decrease observed in brackish water. Moreover, under solar radiation, the use of an 1O2 scavenger allowed us to verify a pronounced retardation of OXA decay, suggesting that 1O2 plays an important role in OXA photodegradation process.


Assuntos
Ácido Oxolínico , Poluentes Químicos da Água , Aquicultura , Substâncias Húmicas/análise , Fotólise , Poluentes Químicos da Água/análise
7.
Environ Res ; 188: 109730, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516634

RESUMO

The presence of antibiotics, such as sulfadiazine (SDZ), in the aquatic environment contributes to the generation of antimicrobial resistance, which is a matter of great concern. Photolysis is known to be a major degradation pathway for SDZ in surface waters. Therefore, influencing factors affecting SDZ photodegradation in different aquatic environments were here evaluated in order to have a better knowledge about its persistence in the environment. Photodegradation of SDZ was found to be more efficient at higher pH (t1/2 = 6.76 h, at pH = 7.3; t1/2 = 12.2 h, at pH = 6.3), in the presence of humic substances (HS) (t1/2 between 1.76 and 2.42 h), as well as in the presence of NaCl (t1/2 = 1.00 h) or synthetic sea salts (t1/2 = 0.78 h). Using ˙OH and 1O2 scavengers, it was possible to infer that direct photolysis was the main pathway for SDZ photodegradation in ultrapure water. Furthermore, results under N2 purging confirmed that 1O2 was not relevant in the phototransformation of SDZ. Then, the referred observations were used for the interpretation of results obtained in environmental matrices, namely the final effluent of a sewage treatment plant (STPF), fresh and brackish water (t1/2 between 2.3 and 3.48 h), in which SDZ photodegradation was found to be much faster than in ultrapure water (t1/2 = 6.76 h).


Assuntos
Sulfadiazina , Poluentes Químicos da Água , Antibacterianos , Substâncias Húmicas , Fotólise , Poluentes Químicos da Água/análise
8.
Chemosphere ; 238: 124613, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31450110

RESUMO

Among pharmaceuticals, the occurrence of antibiotics in the environment is a subject of special concern due to their environmental impact, namely the development of bacterial resistance. Sulfamethoxazole (SMX) is one of the most commonly used antibiotics and it is regularly found, not only in effluents from sewage treatment plants (STPs), but also in the aquatic environment. Photodegradation appears as an alternative process for the removal of this type of pollutants from contaminated waters. In order to be used for a remediation purpose, its evaluation under continuous flow mode is essential, as well as the determination of the final effluent antibacterial activity, which were assessed in this work. As compared with batch operation, the irradiation time needed for SMX elimination under continuous flow mode sharply decreased, which is very advantageous for the target application. Moreover, the interrelation between SMX removal, mineralization and antibacterial activity was evaluated before and during photodegradation in ultrapure water. Although mineralization was slower than SMX removal, bacterial activity increased after SMX photodegradation. Such increase was also verified in environmental water matrices. Thus, this study has proven that photodegradation is an efficient and sustainable process for both (i) the remediation of waters contaminated with antibiotics, and (ii) the minimization of the bacterial resistance.


Assuntos
Antibacterianos/análise , Bactérias/efeitos dos fármacos , Fotólise , Sulfametoxazol/análise , Luz Solar , Poluentes Químicos da Água/análise , Antibacterianos/química , Antibacterianos/efeitos da radiação , Sulfametoxazol/química , Sulfametoxazol/efeitos da radiação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
9.
Sci Total Environ ; 683: 699-708, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150890

RESUMO

This work aimed to assess the fixed-bed adsorptive performance of a primary paper mill sludge-based granular activated carbon (PSA-PA) for the removal of pharmaceuticals, namely carbamazepine (CBZ), sulfamethoxazole (SMX) and paroxetine (PAR), from water. The breakthrough curves corresponding to the adsorption of CBZ at different flow rates and in two different matrices (distilled and municipal wastewater) were firstly determined, which allowed to select the most favorable flow rate for the subsequent experiments. The fixed-bed adsorption of CBZ, SMX and PAR from single and ternary solutions in wastewater showed that the performance of PSA-PA was different for each pharmaceutical. According to the obtained breakthrough curves, the poorest bed adsorption capacity, either from single or ternary solution, was observed for SMX, which may be related with electrostatic repulsion at the pH of the wastewater used (pH ~ 7.3-7.7). Also, the bed adsorption capacity of PSA-PA for SMX, in the ternary solution, was notoriously lower compared to the single solution, while it slightly decreased for CBZ and even increased for PAR. The regeneration studies showed that the CBZ adsorption capacity of the PSA-PA bed decreased about 38 and 71% after the first and the second thermal regeneration stages, respectively. This decline was comparatively larger than the corresponding reduction of the PSA-PA specific surface area (SBET), which decreased only 5 and 25% for the first and second regeneration stages, respectively, and pointed to the lack of viability of more than one regeneration stage.

10.
Environ Sci Pollut Res Int ; 26(13): 13173-13184, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903474

RESUMO

A waste-based alternative activated carbon (AAC) was produced from paper mill sludge under optimized conditions. Aiming its application in tertiary wastewater treatment, AAC was used for the removal of carbamazepine, sulfamethoxazole, and paroxetine from biologically treated municipal wastewater. Kinetic and equilibrium adsorption experiments were run under batch operation conditions. For comparison purposes, they were also performed in ultrapure water and using a high-performance commercial AC (CAC). Adsorption kinetics was fast for the three pharmaceuticals and similar onto AAC and CAC in either wastewater or ultrapure water. However, matrix effects were observed in the equilibrium results, being more remarkable for AAC. These effects were evidenced by Langmuir maximum adsorption capacities (qm, mg g-1): for AAC, the lowest and highest qm were 194 ± 10 (SMX) and 287 ± 9 (PAR), in ultrapure water, and 47 ± 1 (SMX) and 407 ± 14 (PAR), in wastewater, while for CAC, the lowest and highest qm were 118 ± 7 (SMX) and 190 ± 16 (PAR) in ultrapure water and 123 ± 5 (SMX) and 160 ± 7 (CBZ) in wastewater. It was found that the matrix pH played a key role in these differences by controlling the surface electrostatic interactions between pharmaceutical and AC. Overall, it was evidenced the need of adsorption results in real matrices and demonstrated that AAC is a promising option to be implemented in tertiary wastewater treatments for pharmaceuticals' removal. Graphical abstract Production of an alternative activated carbon (AC) comparing favourably with a commercial AC in the removal of neutral and positive pharmaceuticals from wastewater.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Carbamazepina , Carbono , Carvão Vegetal/química , Cinética , Esgotos , Sulfametoxazol , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
J Hazard Mater ; 370: 212-218, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29525451

RESUMO

The wide occurrence of pharmaceuticals in aquatic environments urges the development of cost-effective solutions for their removal from water. In a circular economy context, primary paper mill sludge (PS) was used to produce activated carbon (AC) aiming the adsorptive removal of these contaminants. The use of low-cost precursors for the preparation of ACs capable of competing with commercial ACs continues to be a challenge. A full factorial design of four factors (pyrolysis temperature, residence time, precursor/activating agent ratio, and type of activating agent) at two levels was applied to the production of AC using PS as precursor. The responses analysed were the yield of production, percentage of adsorption for three pharmaceuticals (sulfamethoxazole, carbamazepine, and paroxetine), specific surface area (SBET), and total organic carbon (TOC). Statistical analysis was performed to evaluate influencing factors in the responses and to determine the most favourable production conditions. Four ACs presented very good responses, namely on the adsorption of the pharmaceuticals under study (average adsorption percentage around 78%, which is above that of commercial AC), and SBET between 1389 and 1627 m2 g-1. A desirability analysis pointed out 800 °C for 60 min and a precursor/KOH ratio of 1:1 (w/w) as the optimal production conditions.


Assuntos
Carbamazepina/química , Carvão Vegetal/química , Paroxetina/química , Sulfametoxazol/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Resíduos Industriais , Papel
12.
Sci Total Environ ; 648: 1403-1410, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340285

RESUMO

Sulfamethoxazole (SMX) is the most representative antibiotic of the sulfonamides group used in both human and veterinary medicine, and thus frequently detected in water resources. This has caused special concern due to the pronounced toxicity and potential to foster bacterial resistance of this drug. Therefore, and to further understand the fate of SMX in the aquatic environment, its photodegradation under simulated solar radiation was here studied in ultrapure water and in different environmental samples, namely estuarine water, freshwater and wastewater. SMX underwent very fast photodegradation in ultrapure water, presenting a half-life time (t1/2) of 0.86 h. However, in environmental samples, the SMX photodegradation rate was much slower, with 5.4 h < t1/2 < 7.8 h. The main novelty of this work was to prove that pH, salinity and dissolved organic matter are determinant factors in the decrease of the SMX photodegradation rate observed in environmental samples and, thus, they will influence the SMX fate and persistence, potentially increasing the risks associated to the presence of this pollutant in the environment.


Assuntos
Fotólise , Sulfametoxazol/análise , Poluentes Químicos da Água/análise , Antibacterianos/análise , Antibacterianos/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Salinidade , Sulfametoxazol/química , Poluentes Químicos da Água/química
13.
Sci Total Environ ; 653: 393-400, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30412884

RESUMO

In this work, a granular activated carbon (GAC) was produced using primary paper mill sludge (PS) as raw material and ammonium lignosulfonate (AL) as binder agent. PS is a residue from the pulp and paper industry and AL is a by-product of the cellulose pulp manufacture and the proposed production scheme contributes for their valorisation together with important savings in GAC precursors. The produced GAC (named PSA-PA) and a commercially available GAC (GACN), used as reference material, were physically and chemically characterized. Then, these materials were tested in batch experiments for the adsorption of carbamazepine (CBZ), sulfamethoxazole (SMX), and paroxetine (PAR) from ultra-pure water and wastewater. Even though GACN and PSA-PA possess very similar specific surface areas (SBET) (629 and 671 m2 g-1, respectively), PSA-PA displayed lower maximum adsorption capacities (qm) than GACN for the pharmaceuticals here studied (6 ±â€¯1-44 ±â€¯5 mg g-1 and 49 ±â€¯6-106 ±â€¯40 mg g-1, respectively). This may be related to the comparatively higher incidence of mesopores in GACN, which might have positively influenced its adsorptive performance. Moreover, the highest hydrophobic character and degree of aromaticity of GACN could also have contributed to its adsorption capacity. On the other hand, the performance of both GACs was significantly affected by the matrix in the case of CBZ and SMX, with lower qm in wastewater than in ultra-pure water. However, the adsorption of PAR was not affected by the matrix. Electrostatic interactions and pH effects might also have influenced the adsorption of the pharmaceutical compounds in wastewater.


Assuntos
Carvão Vegetal/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Adsorção , Compostos de Amônio/química , Carbamazepina/análise , Resíduos Industriais , Lignina/análogos & derivados , Lignina/química , Paroxetina/análise , Impressão , Sulfametoxazol/análise
14.
J Environ Manage ; 217: 71-77, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597109

RESUMO

The present work describes a new methodology for the detection of the antidepressant venlafaxine (VEN) in aquatic environments using dispersive liquid-liquid microextraction followed by high performance liquid chromatography with fluorescence detection (DLLME-HPLC-FLD). The method developed is fast, low cost, easy to apply, uses a small volume of organic solvents and allows the simultaneous extraction of various samples. The DLLME-HPLC-FLD method presented a linearity range from 25 to 1500 ng L-1, a detection limit of 24.2 ±â€¯0.2 ng L-1, and an enrichment factor of 75 ±â€¯4. Recovery tests using solutions of NaCl and humic acids showed that ionic strength and organic matter do not influence the efficiency of the extraction, with extraction recoveries above 77%. Finally, the optimized method was applied to the analysis of water samples from different origins and VEN was only detected in one water sample obtained from a waste water treatment plant (WWTP), which had a concentration of 175 ±â€¯5 ng L-1. Recovery tests performed in environmental aquatic samples demonstrated that the developed extraction procedure is not influenced by the complex water matrices, with results ranging from 76 to 93%.


Assuntos
Microextração em Fase Líquida , Cloridrato de Venlafaxina/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Solventes , Águas Residuárias
15.
Bioresour Technol ; 250: 888-901, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29229200

RESUMO

When adsorption is considered for water treatment, commercial activated carbon is usually the chosen adsorbent for the removal of pollutants from the aqueous phase, particularly pharmaceuticals. In order to decrease costs and save natural resources, attempts have been made to use wastes as raw materials for the production of alternative carbon adsorbents. This approach intends to increase efficiency, cost-effectiveness, and also to propose an alternative and sustainable way for the valorization/management of residues. This review aims to provide an overview on waste-based adsorbents used on pharmaceuticals' adsorption. Experimental facts related to the adsorption behaviour of each adsorbent/pharmaceutical pair and some key factors were addressed. Also, research gaps that subsist in this research area, as well as future needs, were identified. Simultaneously, this review aims to clarify the current status of the research on pharmaceuticals' adsorption by waste-based adsorbents in order to recognize if the right direction is being taken.


Assuntos
Poluição da Água , Purificação da Água , Adsorção , Carbono , Carvão Vegetal , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água
16.
J Environ Manage ; 192: 15-24, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130988

RESUMO

This work describes the adsorptive removal of three widely consumed psychiatric pharmaceuticals (carbamazepine, paroxetine and oxazepam) from ultrapure water. Two different adsorbents were used: a commercial activated carbon and a non-activated waste-based carbon (PS800-150-HCl), produced by pyrolysis of primary paper mill sludge. These adsorbents were used in single, binary and ternary batch experiments in order to determine the adsorption kinetics and equilibrium isotherms of the considered pharmaceuticals. For the three drugs and both carbons, the equilibrium was quickly attained (with maximum equilibrium times of 15 and 120 min for the waste-based and the commercial carbons, respectively) even in binary and ternary systems. Single component equilibrium data were adequately described by the Langmuir model, with the commercial carbon registering higher maximum adsorption capacities (between 272 ± 10 and 493 ± 12 µmol g-1) than PS800-150-HCl (between 64 ± 2 and 74 ± 1 µmol g-1). Multi-component equilibrium data were also best fitted by the single component Langmuir isotherm, followed by the Langmuir competitive model. Overall, competitive effects did not largely affect the performance of both adsorbents. Binary and ternary systems maintained fast kinetics, the individual maximum adsorption capacities were not lower than half of the single component systems and both carbons presented improved total adsorption capacities for multi-component solutions.


Assuntos
Carbono , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Esgotos , Poluentes Químicos da Água
17.
J Environ Manage ; 188: 203-211, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984793

RESUMO

Pulp and paper industry produces massive amounts of sludge from wastewater treatment, which constitute an enormous environmental challenge. A possible management option is the conversion of sludge into carbon-based adsorbents to be applied in water remediation. For such utilization it is important to investigate if sludge is a consistent raw material originating reproducible final materials (either over time or from different manufacturing processes), which is the main goal of this work. For that purpose, different primary (PS) and biological sludge (BS) batches from two factories with different operation modes were sampled and subjected to pyrolysis (P materials) and to pyrolysis followed by acid washing (PW materials). All the materials were characterized by proximate analysis, total organic carbon (TOC) and inorganic carbon (IC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and N2 adsorption isotherms (specific surface area (SBET)and porosity determination). Sludge from the two factories proved to have distinct physicochemical properties, mainly in what concerns IC. After pyrolysis, the washing step was essential to reduce IC and to considerably increase SBET, yet with high impact in the final production yield. Among the materials here produced, PW materials from PS were those having the highest SBET values (387-488 m2 g-1). Overall, it was found that precursors from different factories might originate final materials with distinct characteristics, being essential to take into account this source of variability when considering paper mill sludge as a raw material. Nevertheless, for PS, low variability was found between batches, which points out to the reliability of such residues to be used as precursors of carbon adsorbents.


Assuntos
Carbono/química , Resíduos Industriais , Papel , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Porosidade , Reprodutibilidade dos Testes
18.
Chemosphere ; 159: 545-551, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27341158

RESUMO

Estriol (E3) is one of the steroidal estrogens ubiquitously found in the aquatic environment, photodegradation being an important pathway for the elimination of such endocrine disrupting compounds. However, it is important to understand how environmentally important components present in aquatic matrices, such as organic matter, may affect their photodegradation. The main objective of this work was to investigate the photodegradation of E3 in water, under simulated solar radiation, as well as the effect of humic substances (HS - humic acids (HA), fulvic acids (FA) and XAD-4 fraction) in E3 photodegradation. Moreover, the photodegradation behaviour of E3 when present in different environmental aquatic matrices (fresh, estuarine and waste water samples) was also assessed. Results showed a completely different E3 degradation rate depending on the aquatic matrix. In ultrapure water the half-life obtained was about 50 h, while in presence of HS it varied between 5 and 10 h. Then, half-life times between 1.6 and 9.5 h were determined in environmental samples, in which it was observed that the matrix composition contributed up to 97% for the overall E3 photodegradation. Therefore, E3 photodegradation in the considered aquatic matrices was mostly caused by photosensitizing reactions (indirect photodegradation).


Assuntos
Estriol/efeitos da radiação , Fotólise , Poluentes Químicos da Água/efeitos da radiação , Benzopiranos/farmacologia , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/efeitos da radiação , Estriol/química , Meia-Vida , Substâncias Húmicas/análise , Luz , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/química
19.
Talanta ; 158: 198-207, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343596

RESUMO

Sulfamethoxazole (SMX), a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and evaluation of a direct competitive enzyme-linked immunosorbent assay (ELISA) for the quantification of SMX in environmental water samples. The crystal structures of the cross-reacting compounds sulfamethizole, N(4)-acetyl-SMX and succinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82-63µg/L. To verify our results, the SMX concentration in 20 environmental samples, including wastewater and surface water, was determined by ELISA and tandem mass spectrometry (MS/MS). A good agreement of the measured SMX concentrations was found with average recoveries of 97-113% for the results of ELISA compared to LC-MS/MS.


Assuntos
Antibacterianos/análise , Sulfametoxazol/análise , Poluentes Químicos da Água/análise , Animais , Antibacterianos/química , Antibacterianos/imunologia , Anticorpos/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Hemocianinas/química , Peroxidase do Rábano Silvestre/química , Coelhos , Anidridos Succínicos/química , Sulfametoxazol/química , Sulfametoxazol/imunologia , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química , Poluentes Químicos da Água/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA