Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641286

RESUMO

In this study, two nanoemulsions were formulated with essential oil (EO) of Ocimum gratissimum with (EON) or without (EOE) cashew gum (CG). Subsequently, inhibition of melanosis and preservation of the quality of shrimp stored for 16 days at 4 ± 0.5 °C were evaluated. A computational approach was performed to predict the system interactions. Dynamic light scattering (DLS) and atomic force microscopy (AFM) were used for nanoparticle analysis. Gas chromatography and flame ionization detector (GC-FID) determined the chemical composition of the EO constituents. Shrimps were evaluated according to melanosis's appearance, psychrotrophic bacteria's count, pH, total volatile basic nitrogen, and thiobarbituric acid reactive substances. EON exhibited a particle size three times smaller than EOE. The shrimp treated with EON showed a more pronounced sensory inhibition of melanosis, which was considered mild by the 16th day. Meanwhile, in the other groups, melanosis was moderate (EOE) or severe (untreated group). Both EON and EOE treatments exhibited inhibition of psychrotrophic bacteria and demonstrated the potential to prevent lipid oxidation, thus extending the shelf life compared to untreated fresh shrimp. EON with cashew gum, seems more promising due to its physicochemical characteristics and superior sensory performance in inhibiting melanosis during shrimp preservation.


Assuntos
Anacardium , Ocimum , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ocimum/química , Anacardium/química , Penaeidae/química , Gomas Vegetais/química , Conservação de Alimentos/métodos
2.
J Pharm Pharmacol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546507

RESUMO

OBJECTIVES: Angico gum (AG) (Anadenanthera colubrina var. Cebil [Griseb.] Altschul) is utilized by some Brazilian communities to alleviate symptoms from gastroesophageal reflux disease. Here, we aimed to investigate the "in vitro" topical protective capacity of AG on human esophageal mucosa. METHODS: Biopsies of the distal esophageal mucosa were collected from 35 patients with heartburn (24 non-erosive and 11 with erosive oesophagitis (EE)) and mounted in Üssing chambers. AG was applied topically, followed by exposure with acid solution (pH 2.0 or pH 1.0), where transepithelial electrical resistance (TER) and The transepithelial permeability for fluorescein was assessed. The incubation of the AG labeled with FITC in the esophageal mucosa was localized by fluorescence microscopy. KEY FINDINGS: Pretreatment with AG prevented the drop in TER induced by acid solution, as well as significantly decreases the fluorescein permeability in non-erosive patients. The protective effect of AG was sustained for up to 120 min both in biopsies of non-erosive and erosive esophagitis. Confocal microscope images showed mucosal luminal adherence of FITC-labeled AG. CONCLUSION: AG had a prolonged topical protective effect against acid solution in mucosal biopsies of patients with non-erosive and erosive esophagitis.

3.
Int J Biol Macromol ; 260(Pt 1): 129397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219933

RESUMO

Biotechnological advancements require the physicochemical alteration of molecules to enhance their biological efficacy for the effective treatment of gastric ulcers. The study aimed to produce a polyelectrolytic compound from red angico gum (AG) by carboxymethylation, evaluate its physicochemical characteristics and investigate gastric protection against ethanol-induced ulcers. AG and carboxymethylated angico gum (CAG) were characterized by Fourier transform infrared spectroscopy, determination of the degree of substitution and gel permeation chromatography (GPC) and 13C NMR techniques. The results demonstrated that the modification of the polymer was satisfactory, presenting conformational changes e improving the interaction with the gastric mucosa. AG and CAG reduced macroscopic and microscopic damage such as edema, hemorrhage and cell loss caused by exposure of the mucosa to alcohol. Both demonstrated antioxidant activity in vitro, and in vivo, pretreatment with gums led to the restoration of superoxide dismutase and glutathione levels compared to the injured group. Concurrently, the levels of malondialdehyde and nitrite decreased. Atomic force microscopy showed that CAG presented better conformational properties of affinity and protection with the gastric mucosa compared to AG in the acidic pH. Based on our findings, it is suggested that this compound holds promise as a prospective product for future biotechnological applications.


Assuntos
Colubrina , Fabaceae , Úlcera Gástrica , Estudos Prospectivos , Estômago , Antioxidantes/efeitos adversos , Mucosa Gástrica , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Extratos Vegetais/química
4.
Int J Biol Macromol ; 253(Pt 6): 127281, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806422

RESUMO

Hydrogels made with depolymerized guar gum, oxidized with theoretical oxidation degrees of 20, 35 and 50 %, were obtained via Schiff's base reaction with N-succinyl chitosan. The materials obtained were subjected to characterization by FT-IR, rheology, swelling, degradation, and morphology. Additionally, their gelation time categorized all three hydrogels as injectable. The materials' swelling degrees in Phosphate-Buffered Saline (PBS) were in the range of 26-35 g of fluid/g gel and their pore size distribution was heterogeneous, with pores varying from 67 to 93 µm. All hydrogels degraded in PBS solution, but maintained around 40 % of their initial mass after 28 days, which was more than enough time for wound healing. The biomaterials were also flexible, self-repairing, adhesive and cytocompatible and presented intrinsic actions, regardless of the presence of additives or antibiotics, against gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli). However, the most pronounced bactericidal effect was against resistant Staphylococcus aureus - MRSA. In vivo assays, performed with 50 % oxidized gum gel, demonstrated that this material exerted anti-inflammatory effects, accelerating the healing process and restoring tissues by approximately 99 % within 14 days. In conclusion, these hydrogels have unique characteristics, making them excellent candidates for wound-healing dressings.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Hidrogéis/farmacologia , Quitosana/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bandagens , Bactérias , Antibacterianos/farmacologia , Staphylococcus aureus
5.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447501

RESUMO

Tree-exuded gums are natural polymers that represent an abundant raw material in the food and pharmaceutical industries. The cashew gum can be obtained by exudation of trees of the genus Anacardium, a native species of the Brazilian northeast; its polymer consists of monosaccharide units propitious to the action of chemical reactions that tend to improve their intrinsic characteristics among them, as the degree of hydro-solubility. The objective of this work was to modify the exudate gum of Anacardium occidentale (cashew gum (CG)) through an amine reaction. The modification was confirmed by Nuclear Magnetic Resonance (1H NMR), infrared spectroscopy (FTIR), gel permeation chromatography (GPC), zeta potential, and thermogravimetric analysis (TG). In addition, the chemical modification altered the molar mass and surface charge of the CG, and the amino group binding to the CG polymers was confirmed by FTIR spectra. In addition, cytotoxicity tests were performed where cell viability was estimated by an MTT assay on RAW 264.7 macrophages. Through these tests, it was found that the amine caused an increase in the thermal stability of the amino compounds and did not present cytotoxic potential at concentrations below 50.0 mg/L.

6.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299211

RESUMO

The incorporation of polymeric components into aerogels based on clay produces a significant improvement in the physical and thermal properties of the aerogels. In this study, clay-based aerogels were produced from a ball clay by incorporation of angico gum and sodium alginate using a simple, ecologically acceptable mixing method and freeze-drying. The compression test showed a low density of spongy material. In addition, both the compressive strength and the Young's modulus of elasticity of the aerogels showed a progression associated to the decrease in pH. The microstructural characteristics of the aerogels were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The chemical structure was studied by infrared spectroscopy with Fourier transform (FTIR). The TGA curves from a non-oxidizing atmosphere indicated that the clay had a mass loss of 9% above 500 °C and that due to the presence of polysaccharides, the aerogels presented a decomposition of 20% at temperatures above 260 °C. The DSC curves of the aerogels demonstrated a displacement in higher temperatures. In conclusion, the results showed that aerogels of ball clay with the incorporation of polysaccharides, which are still minimally studied, have potential application as thermal insulation considering the mechanical and thermal results obtained.

7.
Int J Biol Macromol ; 243: 125254, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295699

RESUMO

The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD. The biological properties of derivatives were investigated by assays of cytotoxicity and antioxidant activity (2,2-diphenyl-1-picrylhydroxyl - DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt - ABTS). The results obtained by FT-IR confirmed the chemical modification, there was a reduction related to the presence of carbonyl and hydroxyl groups when compared to the in nature polysaccharide spectrum. TGA analysis showed a change in the thermal behavior of the modified materials. X-ray diffraction, it was shown that the in nature polysaccharide appeared as an amorphous material, while the material obtained after the chemical modification process had increased crystallinity, due to the introduction of phthalate groups. For the biological assays, it was observed that the phthalate derivative was more selective than the unmodified material for the murine metastatic melanoma tumor cell line (B16F10), revealing a good antioxidant profile for DPPH and ABTS radicals.


Assuntos
Antineoplásicos , Gracilaria , Animais , Camundongos , Antioxidantes/química , Anidridos Ftálicos , Galactanos , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/química , Polissacarídeos/química
8.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259411

RESUMO

Hydrogels are structures that have value for application in the area of tissue engineering because they mimic the extracellular matrix. Naturally obtained polysaccharides, such as chitosan (CH) and cashew gum, are materials with the ability to form polymeric networks due to their physicochemical properties. This research aimed to develop a scaffold based on chitosan and phthalated cashew tree gum and test it as a support for the growth of human mesenchymal stem cells. In this study, phthalation in cashew gum (PCG) was performed by using a solvent-free route. PCG-CH scaffold was developed by polyelectrolyte complexation, and its ability to support adherent stem cell growth was evaluated. The scaffold showed a high swelling rate. The pore sizes of the scaffold were analyzed by scanning electron microscopy. Human dental pulp stem cells (hDPSCs) were isolated, expanded, and characterized for their potential to differentiate into mesenchymal lineages and for their immunophenotypic profile. Isolated mesenchymal stem cells presented fibroblastoid morphology, plastic adhesion capacity, and differentiation in osteogenic, adipogenic, and chondrogenic lineages. Mesenchymal stem cells were cultured in scaffolds to assess cell adhesion and growth. The cells seeded on the scaffold showed typical morphology, attachment, and adequate distribution inside the matrix pores. Thus, cells seeded in the scaffold may improve the osteoinductive and osteoconductive properties of these biomaterials.

9.
Int J Biol Macromol ; 230: 123272, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649864

RESUMO

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.


Assuntos
Anacardium , Nanopartículas , Trypanosoma cruzi , Reprodutibilidade dos Testes , Nanopartículas/química , Liberação Controlada de Fármacos , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Portadores de Fármacos/farmacologia
10.
Int J Biol Macromol ; 232: 123058, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36669633

RESUMO

Lemon gum (LG) obtained from Citrus × latifolia in Brazil was isolated and characterized. In addition, gum biocompatibility was evaluated in vitro and in vivo by Galleria mellonella and mice model. The cytotoxicity against tumor cells was also evaluated. The ratio of arabinose:galactose: rhamnose:4-OMe-glucuronic acid was 1:0.65:0.06:0.15. Small traces of protein were detected, emphasizing the isolate purity. Molar mass was 8.08 × 105 g/mol, with three different degradation events. LG showed antiproliferative activity against human prostate adenocarcinoma cancer cells, with percentage superior to 50 %. In vivo toxicity models demonstrated that LG is biocompatible polymer, with little difference in the parameters compared to control group. These results demonstrate advance in the study of LG composition and toxicity, indicating a potential for several biomedical and biotechnological future applications.


Assuntos
Adenocarcinoma , Citrus , Masculino , Animais , Camundongos , Humanos , Próstata , Galactanos , Adenocarcinoma/tratamento farmacológico
11.
Laryngoscope ; 133(1): 162-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258096

RESUMO

OBJECTIVE: This study aimed to evaluate the in vivo protective effect of the angico gum biopolymer in reducing the inflammatory response and preserving the integrity of the laryngeal and esophageal mucosa. STUDY DESIGN: Animal study. METHODS: A murine surgical model of gastroesophageal reflux disease was accomplished and subsequently treated with angico gum or omeprazole. On days 3 and 7 post surgery, samples of the larynx and esophagus, respectively, were collected to measure the level of inflammation (wet weight and myeloperoxidase activity) and mucosal integrity (transepithelial electrical resistance and mucosal permeability to fluorescein). RESULTS: Angico gum and omeprazole decreased laryngeal inflammation (wet weight and myeloperoxidase activity) and dramatically improved the integrity of the laryngeal mucosa. It also reduced inflammation (decreased wet weight and myeloperoxidase activity) of the esophagus and preserved the barrier function (inferred by assessing the integrity of the mucosa). CONCLUSION: This study demonstrates the protective effect of angico gum in an experimental gastroesophageal reflux disease model. Angico gum attenuates inflammation and impairment of the mucosal barrier function not only in the larynx but also in the esophagus. LEVEL OF EVIDENCE: NA Laryngoscope, 133:162-168, 2023.


Assuntos
Mucosa Esofágica , Refluxo Gastroesofágico , Camundongos , Animais , Refluxo Gastroesofágico/tratamento farmacológico , Impedância Elétrica , Mucosa , Modelos Animais de Doenças
12.
Polymers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145923

RESUMO

Rigid polyurethane foams were prepared by the one-step expandable foam method using casting molding followed by forming clay-based composites. Polyurethane/vermiculite foam composites (PU/VMT) were controlled based on adding the percentage of clay in the formulation. The effects of composite modifications were evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), and scanning electron microscopy (SEM/EDS) applied to the flame retardancy explored by the vertical burn test. The results indicated that adding clay controlled the particle size concerning polyurethane (PU) foams. However, they exhibited spherical structures with closed cells with relatively uniform distribution. XRD analysis showed the peaks defined at 2θ = 18° and 2θ = 73° relative to the crystallinity in formation and interaction of rigid segments were identified, as well as the influence of crystallinity reduction in composites. In the flame test, the flame retardant surface was successful in all composites, given the success of the dispersibility and planar orientation of the clay layers and the existence of an ideal content of vermiculite (VMT) incorporated in the foam matrix.

13.
AAPS PharmSciTech ; 23(6): 212, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918472

RESUMO

Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 µM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.


Assuntos
Fluoruracila , Neoplasias Cutâneas , Hexoses , Humanos , Lipossomos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
14.
Biosens Bioelectron ; 210: 114211, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468419

RESUMO

Composite materials have gained significant attention owing to the synergistic effects of their constituent materials, thereby facilitating their utilization in new applications or in improving the existing ones. In this study, a composite based on nickel phthalocyanine (NiTsPc), zinc oxide nanoparticles (ZnONPs), and carbon nanotubes (CNT) was developed and subsequently immobilized on a pyrolytic graphite electrode (PGE). The PGE/NiTsPc-ZnONPs-CNT was identified as a selective catalytic hybrid system for detection of neurotransmitter dopamine (DA). The electrochemical and morphological characterizations were conducted using atomic force microscopy (AFM). Chronoamperometry and differential pulse voltammetry (DPV) were used to detect DA and detection limits of 24 nM and 7.0 nM was found, respectively. In addition, the effects of some possible DA interferents, such as ascorbic acid, uric acid, and serotonin, on DA response were evaluated. Their presence did not show significant variations in the DA electrochemical response. The high specificity and sensitivity of PGE/NiTsPc-ZnONPs-CNT for DA enabled its direct detection in human serum without sample pretreatment as well as in DA-enriched serum samples, whose recovery levels were close to 100%, thereby confirming the effectiveness of the proposed method. In general, PGE/NiTsPc-ZnONPs-CNT is a promising candidate for future applications in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas , Nanotubos de Carbono , Óxido de Zinco , Humanos , Ácido Ascórbico/química , Dopamina/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Indóis , Isoindóis , Nanopartículas/química , Nanotubos de Carbono/química , Níquel
15.
Int J Biol Macromol ; 193(Pt A): 100-108, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627848

RESUMO

In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.


Assuntos
Antibacterianos/química , Emulsões/química , Ocimum/metabolismo , Óleos Voláteis/química , Gomas Vegetais/química , Folhas de Planta/metabolismo
16.
Int J Biol Macromol ; 193(Pt A): 450-456, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688680

RESUMO

Enoxaparin is an effective biological molecule for prevention and treatment of coagulation disorders. However, it is poorly absorbed in the gastrointestinal tract. In this study, we developed an Eudragit® L100 coated chitosan core shell nanoparticles for enoxaparin oral delivery (Eud/CS/Enox NPs) through a completely eco-friendly method without employing any high-energy homogenizer technique and any organic solvents. Spherical nanocarriers were successfully prepared with particle size lower than 300 nm, polydispersity index about 0.12 and zeta potential higher than +25 mV, entrapment efficiency greater than 95% and the in vitro release behavior confirms the good colloidal stability and the successful Eudragit® L100 coating process demonstrated by negligible cumulative enoxaparin release (<10%) when the particles are submitted to simulated gastric fluid conditions. Finally, we demonstrated that the core-shell structure of the particle influenced the drug release mechanism of the formulations, indicating the presence of the Eudragit® L100 on the surface of the particles. These results suggested that enteric-coating approach and drug delivery nanotechnology can be successfully explored as potential tools for oral delivery of enoxaparin.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Enoxaparina/química , Nanopartículas/química , Liberação Controlada de Fármacos , Tamanho da Partícula
17.
Int J Biol Macromol ; 191: 1026-1037, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34563578

RESUMO

Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 µg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.


Assuntos
Anacardium/química , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Licopeno/administração & dosagem , Nanopartículas/química , Gomas Vegetais/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HaCaT , Humanos , Licopeno/química , Licopeno/farmacologia , Células MCF-7 , Polissacarídeos/química , Psidium/química , Ovinos
18.
Int J Biol Macromol ; 190: 801-809, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508723

RESUMO

We developed a new hydrophobic polymer based on angico gum (AG), and we produced new nanoparticles to expand the applications of natural polysaccharides in nanomedicine. Phthalate angico gum (PAG) was characterized by 1H NMR, FTIR, elementary analysis, solubility, XRD, and TG. PAG was a hydrophobic and semi-crystalline material, a relevant characteristic for drug delivery system applications. As a proof of concept, nevirapine (NVP) was selected for nanoparticles development. Plackett-Burman's experimental design was used to understand the influence of several factors in nanoparticles production. PAG proved to be a versatile material for producing nanoparticles with different characteristics. Optimized nanoparticles were produced using desirability parameters. NVP-loaded PAG nanoparticles formulation showed 202.1 nm of particle size, 0.23 of PDI, -17.1 of zeta potential, 69.8 of encapsulation efficiency, and promoted modified drug release for 8 h. Here we show that PAG presents as a promising biopolymer for drug delivery systems.


Assuntos
Química Verde , Nanopartículas/química , Nanotecnologia , Ácidos Ftálicos/química , Gomas Vegetais/química , Liberação Controlada de Fármacos , Humanos , Microscopia de Força Atômica , Peso Molecular , Nevirapina/farmacologia , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
19.
J Mater Chem B ; 9(34): 6825-6835, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34369539

RESUMO

This research reports, for the first time, the immobilization of an enzyme - Rhus vernificera laccase - on cashew gum (CG) nanoparticles (NPs) and its application as a biological layer in the design and development of an electrochemical biosensor. Laccase-CG nanoparticles (LacCG-NPs) were prepared by the nanoprecipitation method and characterized by UV-Vis spectrophotometry, atomic force microscopy, scanning electron microscopy, attenuated total reflectance-Fourier-transform infrared spectroscopy, circular dichroism, cyclic voltammetry, and electrochemical impedance spectroscopy. The average size and stability of the NPs were predicted by DLS and zeta potential. The ATR-FTIR results clearly demonstrated an interaction between -NH and -OH groups to form LacCG-NPs. The average size found for LacCG-NPs was 280 ± 53 nm and a polydispersity index of 0.309 ± 0.08 indicated a good particle size distribution. The zeta potential shows a good colloidal stability. The use of a natural product to prepare the enzymatic nanoparticles, its easy synthesis and the immobilization efficiency should be highlighted. LacCG-NPs were successfully applied as a biolayer in the development of an amperometric biosensor for catechol detection. The resulting device showed a low response time (6 s), good sensitivity (7.86 µA µM-1 cm-2), wide linear range of 2.5 × 10-7-2.0 × 10-4 M, and low detection limit (50 nM).


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Catecóis/análise , Lacase/química , Nanopartículas/química , Gomas Vegetais/química , Anacardium/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Configuração de Carboidratos , Técnicas Eletroquímicas , Lacase/metabolismo , Teste de Materiais , Modelos Moleculares , Nanopartículas/metabolismo , Tamanho da Partícula , Gomas Vegetais/isolamento & purificação , Gomas Vegetais/metabolismo , Toxicodendron/enzimologia
20.
Molecules ; 26(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063701

RESUMO

Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer-Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.


Assuntos
Resinas Acrílicas/química , Anacardium , Hidrogéis/química , Gomas Vegetais/química , Animais , Artemia , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Difusão , Fertilizantes , Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Nutrientes , Fosfatos/química , Fósforo , Polímeros/química , Polissacarídeos/química , Potássio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Árvores , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA