Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 106: 102827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301450

RESUMO

JM-20 is a 1,5-benzodiazepine compound fused to a dihydropyridine fraction with different pharmacological properties. However, its potential toxic effects on blood cells have not yet been reported. Thus, the present study aimed to investigate, for the first time, the possible cytotoxicity of JM-20 through cell viability, cell cycle, morphology changes, reactive species (RS) to DCFH-DA, and lipid peroxidation in human leukocytes, its hemolytic effect on human erythrocytes, and its potential DNA genotoxicity using plasmid DNA in vitro. Furthermore, the compound's ability to reduce the DPPH radical was also measured. Human blood was obtained from healthy volunteers (30 ± 10 years old), and the leukocytes or erythrocytes were immediately isolated and treated with different concentrations of JM-20. A cytoprotective effect was exhibited by 10 µM JM-20 against 1 mM tert-butyl hydroperoxide (t-but-OOH) in the leukocytes. However, the highest tested concentrations of the compound (20 and 50 µM) changed the morphology and caused a significant decrease in the cell viability of leukocytes (p < 0.05, in comparison with Control). All tested concentrations of JM-20 also resulted in a significant increase in intracellular RS as measured by DCFH-DA in these cells (p < 0.05, in comparison with Control). On the other hand, the results point out a potent antioxidant effect of JM-20, which was similar to the classical antioxidant α-tocopherol. The IC50 value of JM-20 against the lipid peroxidation induced by (FeII) was 1.051 µM ± 0.21, while the IC50 value of α-tocopherol in this parameter was 1.065 µM ± 0.34. Additionally, 50 and 100 µM JM-20 reduced the DPPH radical in a statistically similar way to the 100 µM α-tocopherol (p < 0.05, in comparison with the control). No significant hemolysis in erythrocytes, no cell cycle changes in leukocytes, and no genotoxic effects in plasmid DNA were induced by JM-20 at any tested concentration. The in silico pharmacokinetic and toxicological properties of JM-20, derivatives, and nifedipine were also studied. Here, our findings demonstrate that JM-20 and its putative metabolites exhibit similar characteristics to nifedipine, and the in vitro and in silico data support the low toxicity of JM-20 to mammals.


Assuntos
Antioxidantes , Fluoresceínas , alfa-Tocoferol , Animais , Humanos , Adulto Jovem , Adulto , Antioxidantes/farmacologia , Antioxidantes/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Nifedipino/metabolismo , Nifedipino/farmacologia , Eritrócitos/metabolismo , DNA , Estresse Oxidativo , Mamíferos/metabolismo
2.
Ecotoxicol Environ Saf ; 210: 111859, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429319

RESUMO

Accuracy, sensitivity, simplicity, reproducibility, and low-cost are desirable requirements for genotoxicity assessment techniques. Here we describe a simple electrophoretic assay for genomic DNA lesions quantification (EAsy-GeL) based on subjecting DNA samples to rapid unwinding/renaturation treatments and neutral agarose gel electrophoresis. The experiments performed in this work involved different biological samples exposed to increasing environmental-simulated doses of ultraviolet-B (UVB) radiation, such as Escherichia coli, human leukocytes, and isolated human genomic DNA. DNA extraction was carried out using a universal and low-cost protocol, which takes about 4 h. Before electrophoresis migration, DNA samples were kept into a neutral buffer to detect double-strand breaks (DSBs) or subjected to a 5-min step of alkaline unwinding and neutral renaturation to detect single-strand breaks (SSBs) or incubated with the DNA repair enzyme T4-endonuclease V for the detection of cyclobutane pyrimidine dimers (CPDs) before the 5-min step of DNA unwinding/renaturation. Then, all DNA samples were separated by neutral agarose gel electrophoresis, the DNA average length of each lane was calculated through the use of free software, and the frequency of DNA breaks per kbp was determined by a simple rule of three. Dose-response experiments allowed the quantification of different levels of DNA damage per electrophoretic run, varying from a constant and low amount of DSBs/SSBs to high and dose-dependent levels of CPDs. Compared with other assays based on alkaline unwinding and gel electrophoresis, EAsy-GeL has important advantages for both environmental monitoring and laboratory testing purposes. The simplicity and applicability of this protocol to other types of DNA lesions, biological models, and agents make it ideal for genotoxicity, DNA repair studies, as well as for assessing exposure risks to ecosystems and human health.


Assuntos
Bioensaio/métodos , Dano ao DNA , DNA/efeitos da radiação , Eletroforese , Raios Ultravioleta , DNA/química , DNA/genética , Escherichia coli/genética , Genoma , Genômica , Humanos , Leucócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA