Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; 37(16): 2801-2807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255125

RESUMO

This study demonstrates in vivo analgesic and anti-inflammatory properties of hydroalcoholic extracts of leaves, bark and flowers from the Handroanthus impetiginosus (Bignoniaceae) plant, recognized as 'Ipê roxo' in Brazil. The extracts were evaluated in male Swiss albino mice via oral administration. Moreover, results of the in vivo paw oedema test induced by carrageenan revealed that extracts of leaves and bark displayed relevant anti-inflammatory activity potential at the dosage of 100 mg/kg, 300 mg/kg, and 500 mg/kg. Likewise, the results obtained for leaves and flowers extracts suggested potent analgesic action in the conventional hot plate test. UPLC/MS analysis of the hydroalcoholic extracts samples identified metabolites belonging to several classes, mainly naphthoquinones and iridoids derivatives as well as flavonoids. Thus, the obtained results indicate that the extracts of H. impetiginosus plant parts could be considered as a complementary herbal medicine for the treatment of pain and inflammation disorders.

2.
Genet Mol Biol ; 35(2): 498-502, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22888300

RESUMO

Tabebuia sp. is native to tropical rain forests throughout Central and South America. Although the biological and pharmacological effects of bark extracts have been intensely studied, little is known on the extract obtained from the flower. Herein, the genotoxic potential of a flower extract from T. impetiginosa ("ipê roxo") on the blood and liver cells of Wistar rats was evaluated. Experimental procedures involved only male animals. Graduated concentrations of the extract, viz., 100, 300 and 500 mg kg(-1) of body weight, were gavage-administered and 24 h latter cells were collected and processed for analysis. With the exception of the 100 mg kg(-1) dose, a significant increase in DNA damage was noted, when compared with a negative control group. Although the genotoxic potential of this extract was higher in liver cells, the response in both tissues was related to dose-dependency. Even though DNA damage can be corrected before conversion into mutations, further study is recommended to arrive at a better understanding of incurred biological effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA