Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Adv Sci (Weinh) ; 10(25): e2300299, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37434063

RESUMO

Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-ß expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.


Assuntos
Melanoma , Macrófagos Associados a Tumor , Camundongos , Animais , Linhagem Celular Tumoral , Imunoterapia , Linfócitos T CD8-Positivos , Microambiente Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-37271251

RESUMO

Lipid droplets (LD) are important regulators of lipid metabolism and are implicated in several diseases. However, the mechanisms underlying the roles of LD in cell pathophysiology remain elusive. Hence, new approaches that enable better characterization of LD are essential. This study establishes that Laurdan, a widely used fluorescent probe, can be used to label, quantify, and characterize changes in cell LD properties. Using lipid mixtures containing artificial LD we show that Laurdan GP depends on LD composition. Accordingly, enrichment in cholesterol esters (CE) shifts Laurdan GP from ∼0.60 to ∼0.70. Moreover, live-cell confocal microscopy shows that cells present multiple LD populations with distinctive biophysical features. The hydrophobicity and fraction of each LD population are cell type dependent and change differently in response to nutrient imbalance, cell density, and upon inhibition of LD biogenesis. The results show that cellular stress caused by increased cell density and nutrient overload increased the number of LD and their hydrophobicity and contributed to the formation of LD with very high GP values, likely enriched in CE. In contrast, nutrient deprivation was accompanied by decreased LD hydrophobicity and alterations in cell plasma membrane properties. In addition, we show that cancer cells present highly hydrophobic LD, compatible with a CE enrichment of these organelles. The distinct biophysical properties of LD contribute to the diversity of these organelles, suggesting that the specific alterations in their properties might be one of the mechanisms triggering LD pathophysiological actions and/or be related to the different mechanisms underlying LD metabolism.


Assuntos
Lauratos , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Lauratos/análise , Lauratos/metabolismo , Metabolismo dos Lipídeos , 2-Naftilamina/análise , 2-Naftilamina/metabolismo
3.
Mol Pharm ; 20(2): 918-928, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700695

RESUMO

Increasing evidence suggests a critical role of lipids in both the mechanisms of toxicity and resistance of cells to platinum(II) complexes. In particular, cisplatin and other analogues were reported to interact with lipids and transiently promote lipid phase changes both in the bulk membranes and in specific membrane domains. However, these processes are complex and not fully understood. In this work, cisplatin and its cationic species formed at pH 7.4 in low chloride concentrations were tested for their ability to induce phase changes in model membranes with different lipid compositions. Fluorescent probes that partition to different lipid phases were used to report on the fluidity of the membrane, and a leakage assay was performed to evaluate the effect of cisplatin in the permeability of these vesicles. The results showed that platinum(II) complex effects on membrane fluidity depend on membrane lipid composition and properties, promoting a stronger decrease in the fluidity of membranes containing gel phase. Moreover, at high concentration, these complexes were prone to alter the permeability of lipid membranes without inducing their collapse or aggregation.


Assuntos
Cisplatino , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Cisplatino/farmacologia , Platina/farmacologia , Fluidez de Membrana , Permeabilidade
4.
Hepatology ; 77(4): 1319-1334, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029129

RESUMO

BACKGROUND AND AIMS: Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS: Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS: Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.


Assuntos
Lipodistrofia Parcial Familiar , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Gotículas Lipídicas , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Fígado/patologia , Hepatócitos/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
J Photochem Photobiol B ; 228: 112404, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35196617

RESUMO

Cell function is highly dependent on membrane structure, organization, and fluidity. Therefore, methods to probe the biophysical properties of biological membranes are required. Determination of generalized polarization (GP) values using Laurdan in fluorescence microscopy studies is one of the most widely-used methods to investigate changes in membrane fluidity in vitro and in vivo. In the last couple of decades, there has been a major increase in the number of studies using Laurdan GP, where several different methodological approaches are used. Such differences interfere with data interpretation inasmuch as it is difficult to validate if Laurdan GP variations actually reflect changes in membrane organization or arise from biased experimental approaches. To address this, we evaluated the influence of different methodological details of experimental data acquisition and analysis on Laurdan GP. Our results showed that absolute GP values are highly dependent on several of the parameters analyzed, showing that incorrect data can result from technical and methodological inconsistencies. Considering these differences, we further analyzed the impact of cell variability on GP determination, focusing on basic cell culture conditions, such as cell confluency, number of passages and media composition. Our results show that GP values can report alterations in the biophysical properties of cell membranes caused by cellular adaptation to the culture conditions. In summary, this study provides thorough analysis of the factors that can lead to Laurdan GP variability and suggests approaches to improve data quality, which would generate more precise interpretation and comparison within individual studies and among the literature on Laurdan GP.


Assuntos
Análise de Dados , Corantes Fluorescentes , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Polarização de Fluorescência , Corantes Fluorescentes/química , Lauratos
7.
Lasers Med Sci ; 37(2): 983-991, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34050494

RESUMO

Ammonia (NH3) has been reported as a breath biomarker for chronic kidney disease (CKD) usually detected at concentrations greater than 0.25 parts per million by volume (ppmV). NH3 was detected in breath of individuals with CKD through gaseous photoacoustic spectroscopy (PAS). The efficiency of hemodialysis (HD) was demonstrated. Eight volunteers aged between 20 and 60 years and without previous respiratory disease were eligible, among which six were control volunteers (CV) and two volunteers with advanced CKD, named CKDV1 and CKDV2. The presence of CKD was confirmed by the calculation of creatinine clearance (CC) according to the Cockcroft-Gault equation. Before HD, the mean NH3 concentration exhaled by CKDV1 was 0.9 ± 0.1 ppmV and after HD was 0.20 ± 0.03 ppmV, which demonstrated an efficiency of 76% NH3 reduction in breath. The CKDV2 exhaled 1.27 ± 0.03 ppmV of NH3 pre-HD and 0.42 ± 0.08 ppmV post-HD, which resulted in efficiency of about 67%. It was not possible to quantify NH3 from CV, what led us to infer that all of them exhaled amounts below the detection limit, i.e., 0.20 ppmV. This assumption is underpinned by CC, whose values hovered at 90 ≤ CC ≤ 120 mL/ min, confirming normal renal function.


Assuntos
Amônia , Insuficiência Renal Crônica , Adulto , Testes Respiratórios/métodos , Expiração , Humanos , Pessoa de Meia-Idade , Insuficiência Renal Crônica/diagnóstico , Análise Espectral , Adulto Jovem
8.
Biochim Biophys Acta Biomembr ; 1863(8): 183628, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915167

RESUMO

1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties. However, little is known regarding the biophysical implications of atypical sphingolipids. In this study, we performed a comprehensive characterization of the effects of the naturally occurring 1-deoxy-dihydroceramide, 1-deoxy-ceramideΔ14Z and 1-deoxymethyl-ceramideΔ3E in the properties of a fluid membrane. In addition, to better define which structural features determine sphingolipid ability to form ordered domains, the synthetic 1-O-methyl-ceramideΔ4E and 1-deoxy-ceramideΔ4E were also studied. Our results show that natural and synthetic 1-deoxy(methyl)-sphingolipids fail to laterally segregate into ordered domains as efficiently as the canonical C16-ceramide. The impaired ability of atypical sphingolipids to form ordered domains was more dependent on the presence, position, and configuration of the sphingoid base double bond than on the structure of its C1 functional group, due to packing constraints introduced by an unsaturated backbone. Nonetheless, absence of a hydrogen bond donor and acceptor group at the C1 position strongly reduced the capacity of atypical sphingolipids to form gel domains. Altogether, the results showed that 1-deoxy(methyl)-sphingolipids induce unique changes on the biophysical properties of the membranes, suggesting that these alterations might, in part, trigger the patho-biological actions of these lipids.


Assuntos
Ceramidas/química , Lipídeos/química , Membranas/química , Esfingolipídeos/química , Biofísica , Ceramidas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Membranas/metabolismo , Esfingolipídeos/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-33892149

RESUMO

Niemann-Pick disease type C (NPC) is a complex and rare pathology, which is mainly associated to mutations in the NPC1 gene. This disease is phenotypically characterized by the abnormal accumulation of multiple lipid species in the acidic compartments of the cell. Due to the complexity of stored material, a clear molecular mechanism explaining NPC pathophysiology is still not established. Abnormal sphingosine accumulation was suggested as the primary factor involved in the development of NPC, followed by the accumulation of other lipid species. To provide additional mechanistic insight into the role of sphingosine in NPC development, fluorescence spectroscopy and microscopy were used to study the biophysical properties of biological membranes using different cellular models of NPC. Addition of sphingosine to healthy CHO-K1 cells, in conditions where other lipid species are not yet accumulated, caused a rapid decrease in plasma membrane and lysosome membrane fluidity, suggesting a direct effect of sphingosine rather than a downstream event. Changes in membrane fluidity caused by addition of sphingosine were partially sustained upon impaired trafficking and metabolization of cholesterol in these cells, and could recapitulate the decrease in membrane fluidity observed in NPC1 null Chinese Hamster Ovary (CHO) cells (CHO-M12) and in cells with pharmacologically induced NPC phenotype (treated with U18666A). In summary, these results show for the first time that the fluidity of the membranes is altered in models of NPC and that these changes are in part caused by sphingosine, supporting the role of this lipid in the pathophysiology of NPC.


Assuntos
Doença de Niemann-Pick Tipo C/patologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetulus , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo
10.
Methods Mol Biol ; 2187: 223-245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770510

RESUMO

The study of the structure and dynamics of membrane domains in vivo is a challenging task. However, major advances could be achieved through the application of microscopic and spectroscopic techniques coupled with the use of model membranes, where the relations between lipid composition and the type, amount and properties of the domains present can be quantitatively studied.This chapter provides protocols to study membrane organization and visualize membrane domains by fluorescence microscopy both in artificial membrane and living cell models of Gaucher Disease (GD ). We describe a bottom-up multiprobe methodology, which enables understanding how the specific lipid interactions established by glucosylceramide, the lipid that accumulates in GD , affect the biophysical properties of model and cell membranes, focusing on its ability to influence the formation, properties and organization of lipid raft domains. In this context, we address the preparation of (1) raft-mimicking giant unilamellar vesicles labeled with a combination of fluorophores that allow for the visualization and comprehensive characterization of those membrane domains and (2) human fibroblasts exhibiting GD phenotype to assess the biophysical properties of biological membrane in living cells using fluorescence microscopy.


Assuntos
Biofísica/métodos , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência/métodos , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Humanos , Pele/metabolismo , Lipossomas Unilamelares/metabolismo
11.
Methods Mol Biol ; 2187: 247-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770511

RESUMO

The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.


Assuntos
Biofísica/métodos , Membrana Celular/metabolismo , Mamíferos/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Ergosterol/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo
13.
Adv Rheumatol ; 60(1): 53, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153496

RESUMO

BACKGROUND: Adverse drug reactions (ADRs) are the sixth leading causes of death worldwide; monitoring them is fundamental, especially in patients with disorders like chronic rheumatic diseases (CRDs). The study aimed to describe the ADRs investigating their severity and associated factors and resulting interventions in pediatric patients with CRDs. METHODS: A retrospective, descriptive and analytical study was conducted on a cohort of children and adolescents with juvenile idiopathic arthritis (JIA), juvenile systemic lupus erythematosus (JSLE) and juvenile dermatomyositis (JDM). The study evaluated medical records of the patients to determine the causality and the management of ADRs. In order to investigate the risk factors that would increase the risk of ADRs, a logistic regression model was carried out on a group of patients treated with the main used drug. RESULTS: We observed 949 ADRs in 547 patients studied. Methotrexate (MTX) was the most frequently used medication and also the cause of the most ADRs, which occurred in 63.3% of patients, followed by glucocorticoids (GCs). Comparing synthetic disease-modifying anti-rheumatic drugs (sDMARDs) vs biologic disease-modifying anti-rheumatic drugs (bDMARDs), the ADRs attributed to the former were by far higher than the latter. In general, the severity of ADRs was moderate and manageable. Drug withdrawal occurred in almost a quarter of the cases. In terms of risk factors, most patients who experienced ADRs due to MTX, were 16 years old or younger and received MTX in doses equal or higher than 0.6 mg/kg/week. Patients with JIA and JDM had a lower risk of ADRs than patients with JSLE. In the multiple regression model, the use of GCs for over 6 months led to an increase of 0.5% in the number of ADRs. CONCLUSIONS: Although the ADRs highly likely affect a wide range of children and adolescents with CRDs they were considered moderate and manageable cases mostly. However, triggers of ADRs need further investigations.


Assuntos
Antirreumáticos , Artrite Juvenil , Dermatomiosite , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Lúpus Eritematoso Sistêmico , Doenças Reumáticas , Adolescente , Antirreumáticos/efeitos adversos , Artrite Juvenil/tratamento farmacológico , Criança , Estudos de Coortes , Dermatomiosite/tratamento farmacológico , Glucocorticoides/efeitos adversos , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Metotrexato , Estudos Retrospectivos , Doenças Reumáticas/tratamento farmacológico , Fatores de Risco
14.
Langmuir ; 36(21): 6007-6016, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32369370

RESUMO

Compared to the canonical sphingoid backbone of sphingolipids (SLs), atypical long-chain bases (LCBs) lack C1-OH (1-deoxy-LCBs) or C1-CH2OH (1-deoxymethyl-LCBs). In addition, when unsaturated, they present a cis-double bond instead of the canonical  Δ4-5 trans-double bond. These atypical LCBs are directly correlated with the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type II through yet unknown mechanisms. Changes in membrane properties have been linked to the biological actions of SLs. However, little is known about the influence of the LCB structure, particularly 1-deoxy(methyl)-LCB, on lipid-lipid interactions and their effect on membrane properties. To address this question, we used complementary fluorescence-based methodologies to study membrane model systems containing POPC and the different LCBs of interest. Our results show that 1-deoxymethyl-LCBs have the highest ability to reduce the fluidity of the membrane, while the intermolecular interactions of 1-deoxy-LCBs were found to be weaker, leading to the formation of less-ordered domains compared to their canonical counterparts-sphinganine and sphingosine. Furthermore, while the presence of a trans-double bond at the Δ4-5 position of the LCB increased the fluidity of the membrane compared to a saturated LCB, a cis-double bond completely disrupted the ability of the LCB to segregate into ordered domains. In conclusion, even small changes on the structure of the LCB, as seen in 1-deoxy(methyl)-LCBs, strongly affects lipid-lipid interactions and membrane fluidity. These results provide evidence that altered balance between species with different LCBs affect membrane properties and may contribute to the pathobiological role of these lipids.

15.
Mol Cell Endocrinol ; 505: 110729, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972330

RESUMO

The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.


Assuntos
Tecido Adiposo/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco/citologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Meios de Cultura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-31233888

RESUMO

Sphingolipids (SLs) are an important class of membrane lipids containing a long chain sphingoid base backbone. SL synthesis is compartmentalized between two major cell organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. The initial steps of sphingolipid synthesis take place in the ER, where the simplest SL, ceramide, is synthesized. Although ceramide is a critical membrane component, an imbalance of ceramide levels can have significant deleterious effects on cell properties leading to events such as apoptosis. For this reason and others, ER ceramide levels must be tightly regulated. Here, we describe the biological and biophysical properties of ceramide and discuss how this might impact the ER membrane. This article is part of a special issue entitled: ER Platforms for Membrane Lipid Dynamics.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Humanos , Fluidez de Membrana , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/metabolismo
17.
Adv Rheumatol ; 60: 53, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1130783

RESUMO

Abstract Background: Adverse drug reactions (ADRs) are the sixth leading causes of death worldwide; monitoring them is fundamental, especially in patients with disorders like chronic rheumatic diseases (CRDs). The study aimed to describe the ADRs investigating their severity and associated factors and resulting interventions in pediatric patients with CRDs. Methods: A retrospective, descriptive and analytical study was conducted on a cohort of children and adolescents with juvenile idiopathic arthritis (JIA), juvenile systemic lupus erythematosus (JSLE) and juvenile dermatomyositis (JDM). The study evaluated medical records of the patients to determine the causality and the management of ADRs. In order to investigate the risk factors that would increase the risk of ADRs, a logistic regression model was carried out on a group of patients treated with the main used drug. Results: We observed 949 ADRs in 547 patients studied. Methotrexate (MTX) was the most frequently used medication and also the cause of the most ADRs, which occurred in 63.3% of patients, followed by glucocorticoids (GCs). Comparing synthetic disease-modifying anti-rheumatic drugs (sDMARDs) vs biologic disease-modifying antirheumatic drugs (bDMARDs), the ADRs attributed to the former were by far higher than the latter. In general, the severity of ADRs was moderate and manageable. Drug withdrawal occurred in almost a quarter of the cases. In terms of risk factors, most patients who experienced ADRs due to MTX, were 16 years old or younger and received MTX in doses equal or higher than 0.6 mg/kg/week. Patients with JIA and JDM had a lower risk of ADRs than patients with JSLE. In the multiple regression model, the use of GCs for over 6 months led to an increase of 0.5% in the number of ADRs. Conclusions: Although the ADRs highly likely affect a wide range of children and adolescents with CRDs they were considered moderate and manageable cases mostly. However, triggers of ADRs need further investigations.(AU)


Assuntos
Humanos , Artrite Juvenil/tratamento farmacológico , Metotrexato/efeitos adversos , Glucocorticoides/efeitos adversos , Epidemiologia Descritiva , Estudos Retrospectivos , Farmacovigilância
18.
Rev. enferm. UERJ ; 27: e42849, jan.-dez. 2019. tab
Artigo em Português | BDENF - Enfermagem, LILACS | ID: biblio-1050558

RESUMO

Objetivo: analisar o número de procedimentos dolorosos agudos e manejo da dor em recém-nascidos pré-termo em uma unidade neonatal. Método: estudo descritivo, transversal. Teve como campo uma unidade neonatal de uma instituição pública de saúde. Os participantes da pesquisa foram recém-nascidos abaixo de 35 semanas. Resultados: foram incluídos 17 recémnascidos. Foi quantificado um total de 729 procedimentos dolorosos. Em média foram realizados 42,9 procedimentos por recém-nascido durante os primeiros 14 dias de vida, sendo aproximadamente três procedimentos realizados por bebê no serviço diurno. Dentre os procedimentos, o mais frequente foi a punção de calcâneo (23,9%). O manejo predominante foi a contenção facilitada (32,7%). A (re)inserção de pronga foi o segundo procedimento mais realizado. Conclusões: O estudo permitiu apreender que o manejo da dor no recém-nascido pré-termo internado em uma unidade neonatal ainda é um desafio


Objective: to analyze the number of acute painful procedures and pain management in preterm infants in a neonatal unit. Method: a cross-sectional and descriptive study. It was conducted in a neonatal unit of a public health institution. The newborns younger than 35 weeks were the participants in the survey. Results: seventeen preterm newborns were included. A total of 729 painful procedures were quantified. On average, 42.9 procedures per newborn were performed during the first 14 days of birth, and approximately three procedures performed per day service by child. The most common procedure was the hell-stick (23.9%). The predominant management was facilitated tucking (32.7%). The CPAP prongs insertion/reinsertion was the second most performed procedure. Conclusions: The present study showed that the management of pain in the preterm newborns in a neonatal unit is strongly neglected by the professionals


Objetivo: analizar el número de procedimientos dolorosos agudos y manejo del dolor en recién nacidos prematuros en una unidad neonatal. Método: estudio descriptivo, transversal. Tuvo como campo una unidad neonatal de una institución pública de salud. Los participantes de la investigación fueron recién nacidos por debajo de 35 semanas. Resultados: se incluyeron 17 recién nacidos. Se cuantificó un total de 729 procedimientos dolorosos. En promedio se realizaron 42,9 procedimientos por recién nacido durante los primeros 14 días de vida, siendo acerca de tres procedimientos realizados por bebé en el servicio diurno. Entre los procedimientos, el más frecuente fue la punción de calcáneo (23,9%). El manejo predominante fue la contención facilitada (32,7%). La (re) inserción de prong fue el segundo procedimiento más realizado. Conclusiones: El estudio permitió aprehender que el manejo del dolor en el recién nacidos prematuros internado en una unidad neonatal se muestra fuertemente descuidado por el equipo.


Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Dor , Recém-Nascido Prematuro/fisiologia , Recém-Nascido Prematuro/psicologia , Recém-Nascido Prematuro/sangue , Procedimentos Clínicos , Manejo da Dor/métodos , Brasil , Recém-Nascido , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Epidemiologia Descritiva , Estudos Transversais , Manejo da Dor , Manejo da Dor/efeitos adversos , Manejo da Dor/psicologia
19.
Adv Exp Med Biol ; 1159: 79-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31502201

RESUMO

Ceramides are the central molecules in sphingolipid metabolism. In addition, they are recognized as important modulators of cell function, playing key roles in several cellular processes that range from cell proliferation to cell death. Moreover, ceramides were implicated in multiple diseases, including cancer, neurodegenerative and metabolic diseases, and also in infection by different pathogens. The mechanisms underlying the diverse biological and pathological actions of ceramides are yet to be fully elucidated. Several lines of evidence suggest that the structural features of ceramides, namely their high hydrophobicity and ability to establish strong H-bond network, are responsible for changes in the biophysical properties of biological membranes that can affect the activity of proteins and activate signaling pathways. Ceramide-induced alterations in membrane biophysical properties might also influence the internalization, trafficking and sorting of lipids, proteins, drugs and even pathogens contributing to cell pathophysiology. In this chapter, we critically discuss the ability of ceramides to form lipid domains with atypical biophysical properties and how these domains can be involved in those processes.


Assuntos
Membrana Celular , Ceramidas/fisiologia , Transdução de Sinais , Humanos , Lipídeos
20.
J Cell Sci ; 132(15)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31371572

RESUMO

Sphingolipids are a fundamental class of molecules that are involved in structural, organizational and signaling properties of eukaryotic membranes. Defects in their production or disposal lead to acquired and inherited human diseases. A growing community of scientists has embraced the challenge to dissect different aspects of sphingolipid biology using a variety of approaches, and a substantial part of this community met last May in the beautiful town of Cascais in Portugal. Over 200 scientists from 26 countries animated the conference, held in a 15th century citadel, sharing their data and opinions on the current understanding and future challenges in sphingolipid research. Here, we report some of their contributions to provide the readers with a bird's-eye view of the themes discussed at the meeting.


Assuntos
Membrana Celular/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Congressos como Assunto , Humanos , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA