Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 172: 668-674, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34252541

RESUMO

BACKGROUND: We have previously described CxxCpep, a peptide with anti-platelet properties that inhibits peri/epicellular protein disulphide isomerase (pecPDI) by forming a mixed disulfide bond with Cys400 within the pecPDI active site. OBJECTIVES: Here we sought to determine if pecPDI targeted by CxxCpep is relevant to redox mechanisms downstream of the collagen receptor GPVI in platelets. METHODS AND RESULTS: Restriction of effects of CxxCpep to the platelet surface was confirmed by LC-MS/MS following cell fractionation. Platelet aggregation was measured in platelet-rich plasma (PRP) incubated with 30 µM CxxCpep or vehicle. CxxCpep inhibited collagen-induced platelet aggregation but exerted no effect in TRAP-6-stimulated platelets. PRP was incubated with DCFDA to measure oxidative burst upon platelet adhesion to collagen. Results showed that CxxCpep decreased oxidative burst in platelets adhered to immobilized collagen while the number of adherent cells was unaffected. Furthermore, flow cytometry studies using a FITC-maleimide showed that the GPVI agonist CRP stimulated an increase in free thiols on the platelet outer membrane, which was inhibited by CxxCpep. Finally, CxxCpep inhibited platelet mitochondrial respiration upon activation with collagen, but not with thrombin. CONCLUSIONS: Our data suggest that pecPDI is a potential modulator of GPVI-mediated redox regulation mechanisms and that CxxCpep can be further exploited as a template for new antiplatelet compounds.


Assuntos
Plaquetas , Isomerases de Dissulfetos de Proteínas , Plaquetas/metabolismo , Cromatografia Líquida , Mitocôndrias/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Explosão Respiratória , Espectrometria de Massas em Tandem
2.
Front Microbiol ; 11: 1222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625178

RESUMO

Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29637048

RESUMO

Leptospires are highly motile spirochetes equipped with strategies for efficient invasion and dissemination within the host. Our group previously demonstrated that pathogenic leptospires secrete proteases capable of cleaving and inactivating key molecules of the complement system, allowing these bacteria to circumvent host's innate immune defense mechanisms. Given the successful dissemination of leptospires during infection, we wondered if such proteases would target a broader range of host molecules. In the present study, the proteolytic activity of secreted leptospiral proteases against a panel of extracellular matrix (ECM) and plasma proteins was assessed. The culture supernatant of the virulent L. interrogans serovar Kennewicki strain Fromm (LPF) degraded human fibrinogen, plasma fibronectin, gelatin, and the proteoglycans decorin, biglycan, and lumican. Interestingly, human plasminogen was not cleaved by proteases present in the supernatants. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. Moreover, production of proteases might be an important virulence determinant since culture-attenuated or saprophytic Leptospira did not display proteolytic activity against ECM or plasma components. Exoproteomic analysis allowed the identification of three metalloproteases that could be involved in the degradation of host components. The ability to cleave conjunctive tissue molecules and coagulation cascade proteins may certainly contribute to invasion and tissue destruction observed upon infection with Leptospira.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/microbiologia , Leptospira interrogans/enzimologia , Leptospirose/metabolismo , Leptospirose/microbiologia , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas Sanguíneas/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Interações Hospedeiro-Patógeno , Humanos , Leptospira interrogans/genética , Leptospirose/sangue , Peptídeo Hidrolases/genética , Proteólise
5.
PLoS Negl Trop Dis ; 9(10): e0004192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517116

RESUMO

The complement system consists of more than 40 proteins that participate in the inflammatory response and in pathogen killing. Complement inhibitors are necessary to avoid the excessive consumption and activation of this system on host cells. Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Pathogenic leptospires are able to escape from complement activation by binding to host complement inhibitors Factor H [FH] and C4b-binding protein (C4BP) while non-pathogenic leptospires are rapidly killed in the presence of fresh serum. In this study, we demonstrate that complement control protein domains (CCP) 7 and 8 of C4BP α-chain interact with the outer membrane proteins LcpA, LigA and LigB from the pathogenic leptospire L. interrogans. The interaction between C4BP and LcpA, LigA and LigB is sensitive to ionic strength and inhibited by heparin. We fine mapped the LigA and LigB domains involved in its binding to C4BP and heparin and found that both interactions are mediated through the bacterial immunoglobulin-like (Big) domains 7 and 8 (LigA7-8 and LigB7-8) of both LigA and LigB and also through LigB9-10. Therefore, C4BP and heparin may share the same binding sites on Lig proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Interações Hospedeiro-Patógeno , Leptospira interrogans/metabolismo , Mapeamento de Interação de Proteínas , Proteínas da Membrana Bacteriana Externa/imunologia , Proteína de Ligação ao Complemento C4b/imunologia , Humanos , Leptospira interrogans/imunologia
6.
Infect Immun ; 78(7): 3207-16, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20404075

RESUMO

We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Leptospira/imunologia , Leptospirose/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Western Blotting , Clonagem Molecular , Proteína de Ligação ao Complemento C4b , Ensaio de Imunoadsorção Enzimática , Genes Bacterianos/genética , Genes Bacterianos/fisiologia , Antígenos de Histocompatibilidade , Humanos , Immunoblotting , Leptospira/genética , Leptospira/fisiologia , Leptospira interrogans/imunologia , Microscopia Imunoeletrônica , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA