Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Oncogene ; 43(11): 804-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279062

RESUMO

HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.


Assuntos
Cromatina , Glioma , Humanos , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glioma/genética
2.
Nat Genet ; 55(2): 209-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635388

RESUMO

Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Multiômica , Encéfalo/metabolismo , Epilepsia/genética , Mutação , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232817

RESUMO

Given the importance of menstrual blood in the pathogenesis of endometriosis and the multifunctional roles of menstrual mesenchymal stem cells (MenSCs) in regenerative medicine, this issue has gained prominence in the scientific community. Moreover, recent reviews highlight how robust the integrated assessment of omics data are for endometriosis. To our knowledge, no study has applied the multi-omics approaches to endometriosis MenSCs. This is a case-control study at a university-affiliated hospital. MenSCs transcriptome and proteome data were obtained by RNA-seq and UHPLC-MS/MS detection. Among the differentially expressed proteins and genes, we emphasize ATF3, ID1, ID3, FOSB, SNAI1, NR4A1, EGR1, LAMC3, and ZFP36 genes and MT2A, TYMP, COL1A1, COL6A2, and NID2 proteins that were already reported in the endometriosis. Our functional enrichment analysis reveals integrated modulating signaling pathways such as epithelial-mesenchymal transition (↑) and PI3K signaling via AKT to mTORC1 (↓ in proteome), mTORC1 signaling, TGF beta signaling, TNFA signaling via NFkB, IL6 STAT3 signaling, and response to hypoxia via HIF1A targets (↑ in transcriptome). Our findings highlight primary changes in the endometriosis MenSCs, suggesting that the chronic inflammatory endometrial microenvironment can modulate these cells, providing opportunities for endometriosis etiopathogenesis. Moreover, they identify challenges for future research leveraging knowledge for regenerative and precision medicine in endometriosis.


Assuntos
Endometriose , Células-Tronco Mesenquimais , Estudos de Casos e Controles , Proliferação de Células , Endometriose/patologia , Feminino , Humanos , Interleucina-6 , Laminina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Menstruação , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma , Fator de Crescimento Transformador beta/genética
4.
BMJ Open ; 12(10): e056801, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253047

RESUMO

OBJECTIVE: The Brazilian state of Paraná has suffered from COVID-19 effects, understanding predictors of increased mortality in health system interventions prevent hospitalisation of patients. We selected the best models to evaluate the association of death with demographic characteristics, symptoms and comorbidities based on three levels of clinical severity for COVID-19: non-hospitalised, hospitalised non-ICU ward and ICU ward. DESIGN: Cross-sectional survey using binomial mixed models. SETTING: COVID-19-positive cases diagnosed by reverse transcription-PCR of municipalities located in Paraná State. PATIENTS: Cases of anonymous datasets of electronic medical records from 1 April 2020 to 31 December 2020. PRIMARY AND SECONDARY OUTCOME MEASURES: The best prediction factors were chosen based on criteria after a stepwise analysis using multicollinearity measure, lower Akaike information criterion and goodness-of-fit χ2 tests from univariate to multivariate contexts. RESULTS: Male sex was associated with increased mortality among non-hospitalised patients (OR 1.76, 95% CI 1.47 to 2.11) and non-ICU patients (OR 1.22, 95% CI 1.05 to 1.43) for symptoms and for comorbidities (OR 1.89, 95% CI 1.59 to 2.25, and OR 1.30, 95% CI 1.11 to 1.52, respectively). Higher mortality occurred in patients older than 35 years in non-hospitalised (for symptoms: OR 4.05, 95% CI 1.55 to 10.54; and for comorbidities: OR 3.00, 95% CI 1.24 to 7.27) and in hospitalised over 40 years (for symptoms: OR 2.72, 95% CI 1.08 to 6.87; and for comorbidities: OR 2.66, 95% CI 1.22 to 5.79). Dyspnoea was associated with increased mortality in non-hospitalised (OR 4.14, 95% CI 3.45 to 4.96), non-ICU (OR 2.41, 95% CI 2.04 to 2.84) and ICU (OR 1.38, 95% CI 1.10 to 1.72) patients. Neurological disorders (OR 2.16, 95% CI 1.35 to 3.46), neoplastic (OR 3.22, 95% CI 1.75 to 5.93) and kidney diseases (OR 2.13, 95% CI 1.36 to 3.35) showed the majority of increased mortality for ICU as well in the three levels of severity jointly with heart disease, diabetes and CPOD. CONCLUSIONS: These findings highlight the importance of the predictor's assessment for the implementation of public healthcare policy in response to the COVID-19 pandemic, mainly to understand how non-pharmaceutical measures could mitigate the virus impact over the population.


Assuntos
COVID-19 , Humanos , Masculino , Brasil/epidemiologia , Comorbidade , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/terapia , Estudos Transversais , Hospitalização , Unidades de Terapia Intensiva , Pandemias , Feminino , Fatores de Risco , Adulto , Pessoa de Meia-Idade , Idoso , Modelos Estatísticos
5.
Genet Mol Biol ; 45(1): e20210309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35266951

RESUMO

Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.

6.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35326089

RESUMO

Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.

7.
Immunobiology ; 226(5): 152130, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425415

RESUMO

In this review, we highlight the interaction of SARS-CoV-2 virus and host genomes, reporting the current studies on the sequence analysis of SARS-CoV-2 isolates and host genomes from diverse world populations. The main genetic variants that are present in both the virus and host genomes were particularly focused on the ACE2 and TMPRSS2 genes, and their impact on the patients' susceptibility to the virus infection and severity of the disease. Finally, the interaction of the virus and host non-coding RNAs is described in relation to their regulatory roles in target genes and/or signaling pathways critically associated with SARS-CoV-2 infection. Altogether, these studies provide a significant contribution to the knowledge of SARS-CoV-2 mechanisms of infection and COVID-19 pathogenesis. The described genetic variants and molecular factors involved in host/virus genome interactions have significantly contributed to defining patient risk groups, beyond those based on patients' age and comorbidities, and they are promising candidates to be potentially targeted in treatment strategies for COVID-19 and other viral infectious diseases.


Assuntos
COVID-19/genética , Genoma , Interações Hospedeiro-Patógeno/genética , RNA não Traduzido , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/terapia , Genes Virais , Humanos , Serina Endopeptidases/genética
8.
Mol Genet Genomic Med ; 9(5): e1616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955723

RESUMO

BACKGROUND: Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by the deficient activity of the branched-chain α-keto acid dehydrogenase (BCKD) enzymatic complex. BCKD is a mitochondrial complex encoded by four genes: BCKDHA, BCKDHB, DBT, and DLD. MSUD is predominantly caused by mutations in the BCKDHA, BCKDHB, and DBT genes which encode the E1α, E1ß, and E2 subunits of the BCKD complex, respectively. The aim of this study was to characterize the genetic basis of MSUD in a cohort of Chilean MSUD patients by identifying point mutations in the BCKDHA, BCKDHB, and DBT genes and to describe their impact on the phenotypic heterogeneity of these patients. METHODS: This manuscript describes a cross-sectional study of 18 MSUD patients carried out using PCR and DNA sequencing. RESULTS: Four novel pathogenic mutations were identified: one in BCKDHA (p.Thr338Ile), two in BCKDHB (p.Gly336Ser e p.Pro240Thr), and one in DBT (p.Gly406Asp). Four additional pathogenic mutations found in this study have been described previously. There were no correlations between the genotype and phenotype of the patients. CONCLUSION: If MSUD is diagnosed earlier, with a newborn screening approach, it might be possible to establish genotype-phenotype relationships more efficiently.


Assuntos
Doença da Urina de Xarope de Bordo/genética , Mutação , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Aciltransferases/genética , Criança , Chile , Di-Hidrolipoamida Desidrogenase/genética , Testes Genéticos/estatística & dados numéricos , Humanos , Doença da Urina de Xarope de Bordo/patologia
9.
Front Genet ; 12: 636542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841501

RESUMO

We recently reported a deviation of local ancestry on the chromosome (ch) 8p23.1, which led to positive selection signals in a Brazilian population sample. The deviation suggested that the genetic variability of candidate genes located on ch 8p23.1 may have been evolutionarily advantageous in the early stages of the admixture process. In the present work, we aim to extend the previous work by studying additional Brazilian admixed individuals and examining DNA sequencing data from the ch 8p23.1 candidate region. Thus, we inferred the local ancestry of 125 exomes from individuals born in five towns within the Southeast region of Brazil (São Paulo, Campinas, Barretos, and Ribeirão Preto located in the state of São Paulo and Belo Horizonte, the capital of the state of Minas Gerais), and compared to data from two public Brazilian reference genomic databases, BIPMed and ABraOM, and with information from the 1000 Genomes Project phase 3 and gnomAD databases. Our results revealed that ancestry is similar among individuals born in the five Brazilian towns assessed; however, an increased proportion of sub-Saharan African ancestry was observed in individuals from Belo Horizonte. In addition, individuals from the five towns considered, as well as those from the ABRAOM dataset, had the same overrepresentation of Native-American ancestry on the ch 8p23.1 locus that was previously reported for the BIPMed reference sample. Sequencing analysis of ch 8p23.1 revealed the presence of 442 non-synonymous variants, including frameshift, inframe deletion, start loss, stop gain, stop loss, and splicing site variants, which occurred in 24 genes. Among these genes, 13 were associated with obesity, type II diabetes, lipid levels, and waist circumference (PRAG1, MFHAS1, PPP1R3B, TNKS, MSRA, PRSS55, RP1L1, PINX1, MTMR9, FAM167A, BLK, GATA4, and CTSB). These results strengthen the hypothesis that a set of variants located on ch 8p23.1 that result from positive selection during early admixture events may influence obesity-related disease predisposition in admixed individuals of the Brazilian population. Furthermore, we present evidence that the exploration of local ancestry deviation in admixed individuals may provide information with the potential to be translated into health care improvement.

10.
Noncoding RNA ; 7(1)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799572

RESUMO

Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.

11.
Hum Genome Var ; 8: 15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824725

RESUMO

SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane serine protease (TMPRSS2) to infect human lung cells. Previous studies have suggested that different host ACE2 and TMPRSS2 genetic backgrounds might contribute to differences in the rate of SARS-CoV-2 infection or COVID-19 severity. Recent studies have also shown that variants in 15 genes related to type I interferon immunity to influenza virus might predispose patients toward life-threatening COVID-19 pneumonia. Other genes (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, IL6, CTSL, ABO, and FURIN) and HLA alleles have also been implicated in the response to infection with SARS-CoV-2. Currently, Brazil has recorded the third-highest number of COVID-19 cases worldwide. We aimed to investigate the genetic variation present in COVID-19-related genes in the Brazilian population. We analyzed 27 candidate genes and HLA alleles in 954 admixed Brazilian exomes. We used the information available in two public databases (http://www.bipmed.org and http://abraom.ib.usp.br/) and additional exomes from individuals born in southeast Brazil, the region of the country with the highest number of COVID-19 patients. Variant allele frequencies were compared with the 1000 Genomes Project phase 3 (1KGP) and gnomAD databases. We detected 395 nonsynonymous variants; of these, 325 were also found in the 1KGP and/or gnomAD. Six of these variants were previously reported to influence the rate of infection or clinical prognosis of COVID-19. The remaining 70 variants were identified exclusively in the Brazilian sample, with a mean allele frequency of 0.0025. In silico analysis revealed that seven of these variants are predicted to affect protein function. Furthermore, we identified HLA alleles previously associated with the COVID-19 response at loci DQB1 and DRB1. Our results showed genetic variability common to other populations and rare and ultrarare variants exclusively found in the Brazilian population. These findings might lead to differences in the rate of infection or response to infection by SARS-CoV-2 and should be further investigated in patients with this disease.

12.
Reprod Biomed Online ; 42(5): 952-962, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736992

RESUMO

RESEARCH QUESTION: Is the transcriptome of cumulus cells of infertile women with advanced endometriosis (EIII/IV), with and without endometrioma, altered? DESIGN: In this prospective case-control study, next-generation RNA sequencing was used to compare the transcript profile of cumulus cells among infertile patients undergoing ovarian stimulation for intracytoplasmic sperm injection with EIII/IV, with (n = 9) and without endometrioma (n = 9), and controls (n = 9). An in-silico enrichment analysis was conducted to establish the possibly altered pathways in cumulus cells of patients with endometriosis. RESULTS: Most of the differentially expressed genes (DEG) were found when cumulus cells from women with EIII/IV with endometrioma were compared with controls (DEG, n = 461). In women with EIII/IV without endometrioma, only 66 DEG were verified compared with controls. The enrichment analysis showed that some DEG in cumulus cells of endometriosis are involved in important pathways for the oocyte competence acquisition, such as oxidative phosphorylation, metabolism, mitochondrial function, acetylation and steroid biosynthesis. No DEG were found when cumulus cells from women with EIII/IV with and without endometrioma were compared. CONCLUSION: RNA sequencing results suggest that cumulus cells of infertile women with EIII/IV have an altered transcriptome, regardless of endometrioma. The present findings offer a better understanding of the genes and molecular mechanisms that may be involved in endometriosis-related infertility, mostly in the oocyte competence acquisition process.


Assuntos
Células do Cúmulo/metabolismo , Endometriose/metabolismo , Infertilidade Feminina/metabolismo , Transcriptoma , Adulto , Estudos de Casos e Controles , Endometriose/complicações , Feminino , Perfilação da Expressão Gênica , Humanos , Infertilidade Feminina/etiologia , Estudos Prospectivos , Adulto Jovem
13.
Neurotox Res ; 39(3): 860-871, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33616872

RESUMO

Although monoaminergic-based antidepressant drugs are largely used to treat major depressive disorder (MDD), their mechanisms are still incompletely understood. Intracellular Ca2+ (iCa2+) and Calmodulin 1(CaM-1) homeostasis have been proposed to participate in the therapeutic effects of these compounds. We investigated whether intra-hippocampal inhibition of CaM-1 would modulate the behavioral responses to chronic treatment with imipramine (IMI) or 7-nitroindazole (7-NI), a selective inhibitor of the neuronal nitric oxide synthase 1 (NOS1) enzyme that shows antidepressant-like effects. We also investigated the interactions of IMI and CaM-1 on transient astrocyte iCa2+ evoked by glutamate stimuli. Intra-hippocampal microinjection of the lentiviral delivered (LV) short hairpin iRNA-driven against the CaM-1 mRNA (LV-shRNA-CaM-1) or the CaM-1 inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7) blocked the antidepressant-like effect of chronic treatment with IMI or 7-NI. The shRNA also inhibited the mRNA expression of the tropomyosin receptor kinase B (TrkB) in the microinjection region. The iCa2+ in ex vivo hippocampus slices stained with fluorescent Ca2+indicator Oregon Green 488 BAPTA-1 revealed that IMI increased the intensity and duration of iCa2+ oscillation and reduced the number of events evoked by glutamate stimuli, evaluated by using CCD imaging and the % ΔF/Fo parameters. The pre-treatment with W-7 fully antagonized this effect. The present results indicate that the behavioral benefits of chronic antidepressant treatment might be associated with astrocyte intracellular Ca2+dynamics and TrkB mRNA expression in the hippocampus.


Assuntos
Antidepressivos/farmacologia , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Depressão/metabolismo , Hipocampo/metabolismo , Receptor trkB/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/psicologia , Células HEK293 , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Resultado do Tratamento
14.
Braz J Otorhinolaryngol ; 87(5): 505-511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31879195

RESUMO

INTRODUCTION: Chronic rhinosinusitis is a multifactorial disease whose pathogenesis, influenced by both genetic and environmental factors, is still unclear. Previous genetic studies have shown that patients with chronic rhinosinusitis have reduced expression of the Interleukin-22 (IL-22) gene. OBJECTIVE: Identify and compare the frequency of polymorphisms in the IL22RA1 gene (IL22 alpha-1 subunit receptor) among chronic rhinosinusitis patients - either with or without nasal polyps. METHODS: Peripheral blood samples were collected from 70 chronic rhinosinusitis with polyps patients, 14 chronic rhinosinusitis without polyps patients and 68 subjects without chronic rhinosinusitis, followed by DNA extraction and IL22RA1 gene sequence analysis. RESULTS: Among ten polymorphisms identified in the IL22RA1 gene, three were not found in any of the genetic databases analyzed. Chronic rhinosinusitis patients displayed higher frequency of the c.113_114insA frameshift insertion, possibly pathogenic. Conversely, in the control group, polymorphism c.435A > C had a significant predominance of the mutated allele, perhaps related to a potential protection against the chronic rhinosinusitis phenotype. Polymorphism c.770C > T, characterized as a non-synonymous variant, was exclusively found in Black chronic rhinosinusitis with polyps patients. CONCLUSIONS: Although no direct causal relationship could be established between IL22RA1 gene polymorphisms and the pathophysiology of chronic rhinosinusitis, genetic variations such as c.113_114insA and c.435A > C may be involved in the susceptibility to or protection against the chronic rhinosinusitis phenotype, respectively. Testing this hypothesis will require studies with larger cohorts.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Doença Crônica , Humanos , Interleucinas , Pólipos Nasais/genética , Polimorfismo Genético , Receptores de Interleucina , Rinite/genética , Sinusite/genética
15.
Blood Transfus ; 19(2): 93-101, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33000756

RESUMO

BACKGROUND: Post-donation illness can be described as appearance of clinical symptoms in blood donors after donation. The consequent call back of the donor to report these symptoms to the blood collection institution is considered a post-donation illness report (PDIR). The most suitable way to examine whether PDIR is related to infection is to apply next-generation sequencing (NGS) and viral metagenomics. Investigation into a PDIR can reveal its importance for transfusion safety and help elaborate strategies for donor education in order to prevent the transfusion transmission of infections which are not routinely tested by the blood collection services. MATERIALS AND METHODS: We applied NGS and viral metagenomics on blood donations which were deferred due to a PDIR. Thirty-three PDIR donations obtained in the Blood Center of Ribeirão Preto, Southeast Brazil, were evaluated. Sequencing was performed using Illumina NextSeq 550 (Illumina Inc, San Diego, CA, USA) equipment and the reads obtained for each sample were analysed by specific bioinformatic pipeline for the classification and discovery of emerging viruses. The identified viral agents by metagenomics were directly confirmed by molecular methods. RESULTS: In all PDIR donations, we found abundant reads of commensal viruses belonging to the Anelloviridae family as well as human pegivirus-1. However, we were also able to identify blood donations positive for clinically important viruses like dengue serotype-2 (DENV-2) of the Asian-American genotype and parvovirus B19 (B19V). Both viruses were also confirmed by real-time polymerase chain reaction, detecting DENV-2 RNA in a significant number of cases (7 samples, 21.2%), compared to B19V which was confirmed in 1 case (3.0%). DISCUSSION: Our study applies for the first time viral metagenomics to evaluate the significance of PDIRs. We confirm the crucial importance of the donor providing a timely PDIR for the prevention of transfusion transmission of viral infections which are not routinely tested in the blood banks worldwide.


Assuntos
Doadores de Sangue , Segurança do Sangue , Viroses/diagnóstico , Vírus/isolamento & purificação , Bancos de Sangue , Brasil , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/virologia , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/isolamento & purificação , Filogenia , Viroses/genética , Vírus/genética
16.
Epilepsia Open ; 5(1): 97-106, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140648

RESUMO

OBJECTIVES: Recently, defects in the protein kinase mTOR (mammalian target of rapamycin) and its associated pathway have been correlated with hemimegalencephaly (HME). mTOR acts as a central regulator of important physiological cellular functions such as growth and proliferation, metabolism, autophagy, death, and survival. This study was aimed at identifying specific variants in mTOR signaling pathway genes in patients diagnosed with HME. METHODS: Using amplicon and whole exome sequencing (WES) of resected brain and paired blood samples from five HME patients, we were able to identify pathogenic mosaic variants in the mTOR pathway genes MTOR, PIK3CA, and DEPDC5. RESULTS: These results strengthen the hypothesis that somatic variants in PI3K-Akt-mTOR pathway genes contribute to HME. We also describe one patient presenting with a pathogenic variant on DEPDC5 gene, which reinforces the role of DEPDC5 on cortical structural changes due to mTORC1 hyperactivation. These findings also provide insights into when in brain development these variants occurred. An early developmental variant is expected to affect a larger number of cells and to result in a larger malformation, whereas the same variant occurring later in development would cause a minor malformation. SIGNIFICANCE: In the future, numerous somatic variants in known or new genes will undoubtedly be revealed in resected brain samples, making it possible to draw correlations between genotypes and phenotypes and allow for a genetic clinical diagnosis that may help to predict a given patient's outcome.

18.
J Pathol ; 249(1): 102-113, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038736

RESUMO

Serotonin (5-HT) signaling pathways are thought to be involved in colorectal tumorigenesis (CRT), but the role of 5-HT synthesis in the early steps of this process is presently unknown. In this study, we used carcinogen treatment in the tryptophan hydroxylase 1 knockout (Tph1KO) and transgenic (Tph1fl/fl VillinCre ) mouse models defective in 5-HT synthesis to investigate the early mutagenic events associated with CRT. Our observations of the colonic crypt post-treatment followed a timeline designed to understand how disruption of 5-HT synthesis affects the initial steps leading to CRT. We found Tph1KO mice had decreased development of both allograft tumors and colitis-related CRT. Interestingly, carcinogenic exposure alone induced multiple colon tumors and increased cyclooxygenase-2 (Ptgs2) expression in Tph1KO mice. Deletion of interleukin 6 (Il6) in Tph1KO mice confirmed that inflammation was a part of the process. 5-HT deficiency increased colonic DNA damage but inhibited genetic repair of specific carcinogen-related damage, leading to CRT-related inflammatory reactions and dysplasia. To validate a secondary effect of 5-HT deficiency on another DNA repair pathway, we exposed Tph1KO mice to ionizing radiation and found an increase in DNA damage associated with reduced levels of ataxia telangiectasia and Rad3 related (Atr) gene expression in colonocytes. Restoring 5-HT levels with 5-hydroxytryptophan treatment decreased levels of DNA damage and increased Atr expression. Analysis of Tph1fl/fl VillinCre mice with intestine-specific loss of 5-HT synthesis confirmed that DNA repair was tissue specific. In this study, we report a novel protective role for 5-HT synthesis that promotes DNA repair activity during the early stages of colorectal carcinogenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Neoplasias Colorretais/prevenção & controle , Dano ao DNA , Reparo do DNA , Lesões Pré-Cancerosas/prevenção & controle , Serotonina/biossíntese , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais , Fatores de Tempo , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética
19.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101765

RESUMO

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Neoplasias Ovarianas/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharmacogenomics J ; 19(1): 72-82, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30131588

RESUMO

Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease that affects approximately 2.5 million people globally. Even though the etiology of MS remains unknown, it is accepted that it involves a combination of genetic alterations and environmental factors. Here, after performing whole exome sequencing, we found a MS patient harboring a rare and homozygous single nucleotide variant (SNV; rs61745847) of the G-protein coupled receptor (GPCR) galanin-receptor 2 (GALR2) that alters an important amino acid in the TM6 molecular toggle switch region (W249L). Nuclear magnetic resonance imaging showed that the hypothalamus (an area rich in GALR2) of this patient exhibited an important volumetric reduction leading to an enlarged third ventricle. Ex vivo experiments with patient-derived blood cells (AKT phosphorylation), as well as studies in recombinant cell lines expressing the human GALR2 (calcium mobilization and NFAT mediated gene transcription), showed that galanin (GAL) was unable to stimulate cell signaling in cells expressing the variant GALR2 allele. Live cell confocal microscopy showed that the GALR2 mutant receptor was primarily localized to intracellular endosomes. We conclude that the W249L SNV is likely to abrogate GAL-mediated signaling through GALR2 due to the spontaneous internalization of this receptor in this patient. Although this homozygous SNV was rare in our MS cohort (1:262 cases), our findings raise the potential importance of impaired neuroregenerative pathways in the pathogenesis of MS, warrant future studies into the relevance of the GAL/GALR2 axis in MS and further suggest the activation of GALR2 as a potential therapeutic route for this disease.


Assuntos
Galanina/genética , Esclerose Múltipla/genética , Receptor Tipo 2 de Galanina/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular , Feminino , Células HEK293 , Humanos , Fosforilação/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA