Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e33739, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108859

RESUMO

Alveolar macrophages (AM) and monocytes (MO) are myeloid cells that play a substantial role in the development and establishment of the innate and adaptive immune response. These cells are crucial for host defense against various pathogens, but their role in malaria is poorly understood. Here, we characterize the dynamics of AMs and recruited leukocytes subpopulations in the airways during experimental Plasmodium berghei NK65-NY (PbNK65). We show that PbNK65 infection induces an increased pulmonary vascular permeability that provides Ly6Clow MOs, neutrophils (NEU), CD4+ and CD8+ lymphocytes in the airways. This inflammatory environment resulted in an increase in the population and alteration of the activation state of the AMs. Taken together, the data presented provide new insights into airway inflammation associated with pulmonary malaria.

2.
Exp Parasitol ; 261: 108750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614222

RESUMO

Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.


Assuntos
Entamoeba , Escherichia coli Enteropatogênica , Fatores de Virulência , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/genética , Entamoeba/patogenicidade , Entamoeba/genética , Entamoeba/fisiologia , Fatores de Virulência/genética , Virulência , Animais , Camundongos , Abscesso Hepático Amebiano/parasitologia , Entamebíase/parasitologia , Humanos , Expressão Gênica
3.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38256880

RESUMO

Plasmodium berghei ANKA (PbA) infection in mice resembles several aspects of severe malaria in humans, such as cerebral malaria and acute respiratory distress syndrome. Herein, the effects of N-(coumarin-3-yl)cinnamamide (M220) against severe experimental malaria have been investigated. Treatment with M220 proved to protect cognitive abilities and lung function in PbA-infected mice, observed by an object recognition test and spirometry, respectively. In addition, treated mice demonstrated decreased levels of brain and lung inflammation. The production and accumulation of microglia, and immune cells that produce the inflammatory cytokines TNF and IFN-γ, decreased, while the production of the anti-inflammatory cytokine IL-10 by innate and adaptive immune cells was enhanced. Treatment with M220 promotes immunomodulatory, neuroprotective, and lung function-preserving effects during experimental severe malaria. Therefore, it may be an interesting therapeutic candidate to treat severe malaria effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA