Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Curr Microbiol ; 56(4): 322-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18188645

RESUMO

Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts.


Assuntos
Etanol/metabolismo , Microbiologia Industrial , Leveduras/classificação , Leveduras/isolamento & purificação , Brasil , DNA Fúngico/química , DNA Fúngico/genética , DNA Intergênico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fermentação , Genes de RNAr , Melaço/microbiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 5,8S/genética , Ribotipagem , Análise de Sequência de DNA , Sacarose/metabolismo
2.
J Appl Microbiol ; 102(2): 538-47, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17241360

RESUMO

AIMS: To identify and characterize the main contaminant yeast species detected in fuel-ethanol production plants in Northeast region of Brazil by using molecular methods. METHODS AND RESULTS: Total DNA from yeast colonies isolated from the fermentation must of industrial alcohol plants was submitted to PCR fingerprinting, D1/D2 28S rDNA sequencing and species-specific PCR analysis. The most frequent non-Saccharomyces cerevisiae isolates were identified as belonging to the species Dekkera bruxellensis, and several genetic strains could be discriminated among the isolates. The yeast population dynamics was followed on a daily basis during a whole crop harvesting period in a particular industry, showing the potential of D. bruxellensis to grow faster than S. cerevisiae in industrial conditions, causing recurrent and severe contamination episodes. CONCLUSIONS: The results showed that D. bruxellensis is one of the most important contaminant yeasts in distilleries producing fuel-ethanol from crude sugar cane juice, specially in continuous fermentation systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Severe contamination of the industrial fermentation process by Dekkera yeasts has a negative impact on ethanol yield and productivity. Therefore, early detection of D. bruxellensis in industrial musts may avoid operational problems in alcohol-producing plants.


Assuntos
DNA Fúngico/análise , Fontes Geradoras de Energia , Etanol , Microbiologia Industrial , Saccharomycetales/genética , Saccharum , Brasil , Impressões Digitais de DNA , Fermentação , Saccharomyces cerevisiae/genética
3.
Genet Mol Res ; 6(4): 1072-84, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18273800

RESUMO

Industrial ethanol fermentation is a complex microbiological process to which yeast cells must adapt for survival. One of the mechanisms for adaptation is thought to involve chromosome rearrangements. We found that changes in chromosome banding patterns measured by pulsed-field gel electrophoresis can also be produced in laboratory media under simulated industrial conditions. Based on analysis of their generational variation, we found that these chromosome changes were specific to the genetic backgrounds of the initial strains. We conclude that chromosome rearrangements could be one of the factors involved in yeast cell adaptation to the industrial environment.


Assuntos
Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Reatores Biológicos/microbiologia , Biotecnologia , Instabilidade Cromossômica , Impressões Digitais de DNA , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Etanol/metabolismo , Fermentação , Cariotipagem , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia
4.
Genet. mol. res. (Online) ; 6(4): 1072-1084, 2007. ilus
Artigo em Inglês | LILACS | ID: lil-520042

RESUMO

Industrial ethanol fermentation is a complex microbiological process to which yeast cells must adapt for survival. One of the mechanisms for adaptation is thought to involve chromosome rearrangements. We found that changes in chromosome banding patterns measured by pulsed-field gel electrophoresis can also be produced in laboratory media under simulated industrial conditions. Based on analysis of their generational variation, we found that these chromosome changes were specific to the genetic backgrounds of the initial strains. We conclude that chromosome rearrangements could be one of the factors involved in yeast cell adaptation to the industrial environment.


Assuntos
Instabilidade Cromossômica , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Biotecnologia , Impressões Digitais de DNA , DNA Fúngico/isolamento & purificação , Fermentação , Cariotipagem , Reatores Biológicos/microbiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia
5.
Lett Appl Microbiol ; 40(1): 19-23, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15612997

RESUMO

AIMS: The present work focuses on the possibility to use conserved primers that amplify yeast ITS1-5.8S-ITS2 ribosomal DNA locus (rDNA) to detect the presence of non-Saccharomyces cerevisiae yeast in fermentation must of bioethanol fermentation process. METHODS AND RESULTS: Total DNA was extracted from pure or mixed yeast cultures containing different cell concentrations and different contaminant/fermenting yeast concentrations and submitted to PCR. Upon improvement of detection limits and DNA extraction protocol, must samples of distillery were checked for the presence of contaminant yeast. Contaminant rDNA bands were detected only in industrial samples during contamination episodes, but not in noncontaminated must. CONCLUSIONS: The method described here could detect the presence of contaminant yeast from industrial must in eight hours after sampling. SIGNIFICANCE AND IMPACT OF THE STUDY: The improved procedure may help to avoid severe contamination episodes at fermentation industries by decreasing the detection time from 5 days to 8 h and possible quantification of contaminant yeasts that can impose economical loss to the process.


Assuntos
Etanol/metabolismo , Microbiologia Industrial , Técnicas de Tipagem Micológica , Saccharomyces cerevisiae/metabolismo , Leveduras/classificação , DNA Ribossômico/análise , DNA Espaçador Ribossômico/análise , Fermentação , Reação em Cadeia da Polimerase/métodos , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Leveduras/genética , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA