Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(7): 425-433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853196

RESUMO

During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potexvirus , Arabidopsis/metabolismo , Potexvirus/fisiologia , Antivirais/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Doenças das Plantas
2.
Cell Host Microbe ; 30(4): 489-501.e4, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247330

RESUMO

High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Estômatos de Plantas/microbiologia , Pseudomonas syringae , Água
3.
J Exp Bot ; 71(20): 6197-6210, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32835379

RESUMO

RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.


Assuntos
Antivirais , Proteínas Argonautas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Interferência de RNA
4.
Plant Cell Physiol ; 61(5): 957-966, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105323

RESUMO

Flowering time is a finely tuned process in plants, in part controlled by the age-regulated microRNA156 (miR156), which functions by suppressing the transcripts of SQUAMOSA-PROMOTER BINDING LIKE (SPL) transcription factors. ARGONAUTE (AGO) proteins are essential effectors of miRNA-mediated gene regulation. However, which AGO(s) mediate(s) the control of flowering time remains unclear. Here, we demonstrate a role of AGO5 in controlling flowering time by modulating the expression of SPL transcription factors. We show that AGO5 interacts physically and functionally with miR156 and that ago5 mutants present an early flowering phenotype in Arabidopsis. Furthermore, in ago5 mutants, the repression of flowering caused by miR156 overexpression is largely reversed, whereas leaf morphology remains unaffected. Our results thus indicate a specific role for AGO5 in mediating miR156 activity in meristematic, but not vegetative, tissue. As such, our data suggest a spatiotemporal regulation of the miR156 aging pathway mediated through different AGO proteins in different tissues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , MicroRNAs/genética , Mutação/genética , Fenótipo , Ligação Proteica , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo
5.
Plant Biotechnol J ; 14(6): 1381-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26579999

RESUMO

Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.


Assuntos
Eucalyptus/genética , Regulação da Expressão Gênica de Plantas , Madeira/genética , Biomassa , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Perfilação da Expressão Gênica/métodos , Inativação Gênica , Genoma de Planta , Lignina/genética , Lignina/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Técnicas de Cultura de Tecidos , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA