Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1297: 342336, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438226

RESUMO

BACKGROUND: Developing disposable paper-based devices has positively impacted analytical science, particularly in developing countries. Some benefits of those devices include their versatility, affordability, environmentally friendly, and the possibility of being integrated with portable electrochemical or colorimetric detectors. Paper-based analytical devices (PADs) comprising circular zones and microfluidic networks have been successfully employed in the analytical chemistry reign. However, the combination of the stencil-printing method and alternative binder has not been satisfactorily explored for fabricating colorimetric paper devices. RESULTS: We developed PADs exploring the stencil printing approach and glass varnish as the hydrophobic chemical agent. As a proof-of-concept, the colorimetric assay of salivary α-amylase (sAA) was performed in saliva samples. Through the scanning electron microscopy measurements, it was possible to indicate satisfactory definitions between native fibers and barrier, and that the measured values for the channel width revealed suitable fidelity (R2 = 0.99) with the nominal widths (ranging from 400 to 5000 µm). The proposed hydrophobic barrier exhibited excellent chemical resistance. The analytical applicability for detecting sAA revealed linear behavior in the range from 2 to 12 U mL-1 (R2 = 0.99), limit of detection of 0.75 U mL-1, reproducibility (RSD ≤2.4%), recovery experiments ranged from 89 to 108% and AGREE response (0.86). In addition, the colorimetric analysis of sAA in four different saliva samples demonstrated levels ranging from 202 to 2080 U mL-1, which enabled monitoring the absence and presence of periodontitis. SIGNIFICANCE: This report has presented the first use of a self-adhesive mask and glass varnish for creating circular zones and microfluidic architectures on paper without using thermic or UV curing treatments. Also, the proposed analytical methodology for detecting sAA exhibited suitable ecological impact considering the AGREE tool. We believe the proposed fabrication of paper devices emerges as a novel, simple, high-fidelity microfluidic channel and portable analytical approach for colorimetric sensing.


Assuntos
Colorimetria , alfa-Amilases Salivares , Reprodutibilidade dos Testes , Bioensaio , Vidro
2.
Anal Chem ; 96(14): 5349-5356, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554084

RESUMO

The patterning of hydrophilic paper with hydrophobic materials has emerged as an interesting method for the fabrication of paper-based devices (PADs). Herein, we demonstrate a digitally automated, easy, low-cost, eco-friendly, and readily available method to create highly hydrophobic barriers on paper that can be promptly employed with PADs by simply using a bioink made with rosin, a commercially available natural resin obtained from conifer trees. The bioink can be easily delivered with the use of a ballpoint pen to produce water- and organic solvent-resistant barriers, showing superior properties when compared to other methods such as wax-printing or permanent markers. The approach enables the pen to be attached to a commercially available cutting printer to perform the semiautomated fabrication of hydrophobic barriers for PADs. With the aid of digitally controlled optimization, together with features of machine learning and design of experiments, we show a thorough investigation on the barrier strength that can be further adjusted to the desired application's needs. Then, we explored the barrier sturdiness across various uses, such as wide range aqueous pH sensing and the harsh acidic/organic conditions needed for the colorimetric detection of cholecalciferol.


Assuntos
Papel , Água , Solventes , Impressão/métodos , Impressão Tridimensional
3.
Food Chem ; 444: 138677, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38359702

RESUMO

In this study, compact 3D-printed carbon black (CB) electrodes were manufactured for using in folic acid (FA) analysis in fruit samples. Before application in FA analysis, the electrode surfaces were characterized by high-resolution scanning electron microscopy and voltammetry using well-known redox probes. Square wave voltammetric study presented linear responses in the range between 10 and 200 µmol/L (R2 > 0.99), exhibited a suitable detection limit (LOD) of âˆ¼ 5.1 µmol/L and acceptable performance in terms of reproducibility and anti-interference experiments. The analysis of FA in four different food samples using the proposed method agreed statistically with a comparative technique based on spectrophotometric measurements. Moreover, results from photostability experiments indicated that FA can be degraded after 5 and 20 min of UV exposure. These results successfully demonstrated the analytical feasibility of the 3D-printed electrodes as sensing material and for monitoring the photostability of FA in different fruit matrices.


Assuntos
Ácido Fólico , Impressão Tridimensional , Ácido Fólico/análise , Reprodutibilidade dos Testes , Fotólise , Oxirredução , Eletrodos , Técnicas Eletroquímicas/métodos
4.
Anal Chem ; 95(38): 14350-14356, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37672689

RESUMO

The measurement of gaseous compounds in the atmosphere is a multichallenging task due to their low concentration range, long and latitudinal concentration variations, and the presence of sample interferents. Herein, we present a quadcopter drone deployed with a fully integrated 3D-printed analytical laboratory for H2S monitoring. Also, the analytical system makes part of the Internet of Things approach. The analytical method applied was based on the reaction between fluorescein mercuric acetate and H2S that led to fluorescence quenching. A 5 V micropump at a constant airflow of 50 mL min-1 was employed to deliver constant air into a flask containing 800 µL of the reagent. The analytical signal was obtained using a light-emitting diode and a miniaturized digital light detector. The method enabled the detection of H2S in the range from 15 to 200 ppbv, with a reproducibility of 5% for a sampling time of 10 min and an limit of detection of 9 ppbv. All devices were controlled using an Arduino powered by a small power bank, and the results were transmitted to a smartphone via Bluetooth. The proposed device resulted in a weight of 300 g and an overall cost of ∼50 USD. The platform was used to monitor the concentration of H2S in different intervals next to a wastewater treatment plant at ground and vertical levels. The ability to perform all analytical steps in the same device, the low-energy requirements, the low weight, and the attachment of data transmission modules offer new possibilities for drone-based analytical systems for air pollution monitoring.

5.
Mikrochim Acta ; 190(8): 324, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493852

RESUMO

The development of a disposable electrochemical paper-based analytical device (ePAD) is described using a novel formulation of conductive ink that combines graphite powder, polyester resin, and acetone. As a proof of concept, the proposed sensor was utilized for paracetamol (PAR) sensing. The introduced ink was characterized via morphological, structural, and electrochemical analysis, and the results demonstrated appreciable analytical performance. The proposed ePAD provided linear behavior (R2 = 0.99) in the concentration range between 1 and 60 µmol L-1, a limit of detection of 0.2 µmol L-1, and satisfactory reproducibility (RSD ~ 7.7%, n = 5) applying a potential of + 0.81 V vs Ag at the working electrode. The quantification of PAR was demonstrated in different pharmaceutical formulations. The achieved concentrations revealed good agreement with the labeled values, acceptable accuracy (101% and 106%), and no statistical difference from the data obtained by HPLC at the 95% confidence level. The environmental impact of the new device was assessed using AGREE software, which determined a score of 0.85, indicating that it is eco-friendly. During the pharmacokinetic study of PAR, it was found that the drug has a maximum concentration of 23.58 ± 0.01 µmol L-1, a maximum time of 30 min, and a half-life of 2.15 h. These results are comparable to other studies that utilized HPLC. This suggests that the combination of graphite powder and polyester resin can transform conductive ink into an effective ePAD that can potentially be used in various pharmaceutical applications.


Assuntos
Acetaminofen , Grafite , Acetaminofen/análise , Grafite/química , Tinta , Reprodutibilidade dos Testes , Pós , Técnicas Eletroquímicas/métodos , Poliésteres
6.
Chemosphere ; 336: 139283, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348616

RESUMO

The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 µm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 µm, 0.8 µm and 0.22 µm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.


Assuntos
Poluentes Atmosféricos , Artemia , Humanos , Animais , Brasil , Aerossóis/toxicidade , Aerossóis/análise , Bioensaio , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
7.
Anal Chim Acta ; 1254: 341077, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005016

RESUMO

Digital microfluidics (DMF) is a versatile lab-on-a-chip platform that allows integration with several types of sensors and detection techniques, including colorimetric sensors. Here, we propose, for the first time, the integration of DMF chips into a mini studio containing a 3D-printed holder with previously fixed UV-LEDs to promote sample degradation on the chip surface before a complete analytical procedure involving reagent mixture, colorimetric reaction, and detection through a webcam integrated on the equipment. As a proof-of-concept, the feasibility of the integrated system was successfully through the indirect analysis of S-nitrosocysteine (CySNO) in biological samples. For this purpose, UV-LEDs were explored to perform the photolytic cleavage of CySNO, thus generating nitrite and subproducts directly on DMF chip. Nitrite was then colorimetrically detected based on a modified Griess reaction, in which reagents were prepared through a programable movement of droplets on DMF devices. The assembling and the experimental parameters were optimized, and the proposed integration exhibited a satisfactory correlation with the results acquired using a desktop scanner. Under the optimal experimental conditions, the obtained CySNO degradation to nitrite was 96%. Considering the analytical parameters, the proposed approach revealed linear behavior in the CySNO concentration range between 12.5 and 400 µmol L-1 and a limit of detection equal to 2.8 µmol L-1. Synthetic serum and human plasma samples were successfully analyzed, and the achieved results did not statistically differ from the data recorded by spectrophotometry at the confidence level of 95%, thus indicating the huge potential of the integration between DMF and mini studio to promote complete analysis of lowmolecular weight compounds.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Colorimetria , Nitritos
8.
Artigo em Inglês | MEDLINE | ID: mdl-36884339

RESUMO

Here, we propose a recyclable approach using acrylonitrile-butadiene-styrene (ABS) residues from additive manufacturing in combination with low-cost and accessible graphite flakes as a novel and potential mixture for creating a conductive paste. The graphite particles were successfully incorporated in the recycled thermoplastic composite when solubilized with acetone and the mixture demonstrated greater adherence to different substrates, among which cellulose-based material made possible the construction of a paper-based electrochemical sensor (PES). The morphological, structural, and electrochemical characterizations of the recycled electrode material were demonstrated to be similar to those of the traditional carbon-based surfaces. Faradaic responses based on redox probe activity ([Fe(CN)6]3-/4-) exhibited well-defined peak currents and diffusional mass transfer as a quasi-reversible system (96 ± 5 mV) with a fast heterogeneous rate constant value of 2 × 10-3 cm s-1. To improve the electrode electrochemical properties, both the PES and the classical 3D-printed electrode surfaces were modified with a combination of multiwalled carbon nanotubes (MWCNTs), graphene oxide (GO), and copper. Both electrode surfaces demonstrated the suitable oxidation of nitrite at 0.6 and 0.5 V vs Ag, respectively. The calculated analytical sensitivities for PES and 3D-printed electrodes were 0.005 and 0.002 µA/(µmol L-1), respectively. The proposed PES was applied for the indirect amperometric analysis of S-nitroso-cysteine (CysNO) in serum samples via nitrite quantitation, demonstrating a limit of detection of 4.1 µmol L-1, with statistically similar values when compared to quantitative analysis of the same samples by spectrophotometry (paired t test, 95% confidence limit). The evaluated electroanalytical approach exhibited linear behavior for nitrite in the concentration range between 10 and 125 µmol L-1, which is suitable for realizing clinical diagnosis involving Parkinson's disease, for example. This proof of concept shows the great promise of this recyclable strategy combining ABS residues and conductive particles in the context of green chemical protocols for constructing disposable sensors.

9.
Anal Bioanal Chem ; 415(18): 4391-4400, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36773069

RESUMO

This paper describes the design and construction of dual microfluidic paper-based analytical devices (dual-µPADs) as a lab-on-paper platform involving a "do-it-yourself" fabrication protocol. The device comprises a colorimetric and electrochemical module to obtain a dual-mode signal readout sensing strategy. A 3D pen polymeric resin was used to prepare graphite carbon-based electrodes and hydrophobic barriers on paper substrates. The proposed carbon-based ink was employed to manufacture electrodes on paper based on a stencil-printing approach, which were further characterized by electrochemical and morphological analyses. The analytical performance of the dual-µPADs was simultaneously evaluated for lactate, pH, nitrite, and salivary amylase (sAA) analysis. To demonstrate the proof-of-concept, saliva samples collected from both healthy individuals and those with periodontitis were successfully tested to demonstrate the feasibility of the proposed devices. Samples collected from individuals previously diagnosed with periodontitis showed high levels of nitrite and sAA (> 94 µmol L-1 and > 610 U mL-1) in comparison with healthy individuals (≤ 16 µmol L-1 and 545 U mL-1). Moreover, periodontitis saliva resulted in acid solution and almost null lactate levels. Notably, this protocol supplies a simple way to manufacture dual-µPADs, a versatile platform for sensitive detecting of biomarkers in saliva playing a crucial role towards the point-of-care diagnosis of periodontal disease.


Assuntos
Técnicas Analíticas Microfluídicas , Doenças Periodontais , Periodontite , Humanos , Nitritos/análise , Dispositivos Lab-On-A-Chip , Colorimetria/métodos , Carbono , Papel
10.
Talanta ; 251: 123812, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961083

RESUMO

This study describes the development of electrochemical paper-based analytical devices (ePADs) using carbon-based paste combining silicone glue and graphite powder. The ePADs were manufactured using the screen-printing technique, which consisted of depositing the conductive ink on a screencast on the paper surface. In addition, an alternative electrical connector was designed and 3D-printed to make the detection method cheaper, portable and reproducible. The morphological, structural, and electrochemical properties of the conductive material developed were investigated through scanning electron microscopy (SEM), Raman spectroscopy, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. The ePADs combined with the alternative connector revealed high repeatability, reproducibility, and stable responses considering a well-known redox probe ([Fe(CN)6]4-/3-). In addition, the proposed ePAD provided a linear response for standard solutions of ascorbic acid (AA) in the concentration range between 0.1 and 2.0 mmol L-1. The achieved limit of detection was 4.0 µmol L-1. As proof of applicability, the ePADs were evaluated for AA analysis in synthetic biofluids (blood plasma and urine), vitamin C tablets, and food (gelatine and orange juice) samples. The analytical parameters of the proposed device were compared with other reports in the literature and exhibited similar or even superior performance, highlighting its feasibility for sensing applications.


Assuntos
Grafite , Ácido Ascórbico , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Tinta , Pós , Reprodutibilidade dos Testes , Silicones , Comprimidos
11.
Mikrochim Acta ; 189(6): 235, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35633399

RESUMO

The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their integration was based on a threadable assembling without commercial component requirements. Printed electrodes were exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemical impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast heterogeneous rate constants ((1.5 ± 0.1) × 10-3 cm s-1). Operational parameters of BIA cell were optimized using a redox probe composed of [Fe(CN)6]4-/3- under stirring and the best analytical performance was achieved using a dispensing rate of 9.0 µL s-1 and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), linear concentration range (5 to 40 µmol L-1; R2 = 0.99), limit of detection (0.61 µmol L-1), and high analytical frequency (494 ± 13 h-1). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.


Assuntos
Espectroscopia Dielétrica , Fuligem , Eletrodos , Impressão Tridimensional , Reprodutibilidade dos Testes
12.
Talanta ; 232: 122408, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074398

RESUMO

This study describes the development of a new electrochemical paper-based analytical device (ePAD) on alumina sandpaper substrate through a pencil-drawing process for square wave voltammetry measurements of midazolam maleate used as a "date rape drug" in beverages. The proposed ePAD was assembled on a reusable 3D printed holder to delimit its geometric area and ensure better robustness. The ePAD was characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Raman spectroscopy. The direct drawing of ePADs on sandpaper platforms through a graphite pencil has offered suitable repeatability (RSD = 1.0%) and reproducibility (RSD = 4.0%) using [Fe(CN)6]4- as redox probe. The proposed ePAD provided linear behaviour in the midazolam maleate concentration range between 2.5 and 150 mg L-1 and a limit of detection of 2.0 mg L-1. The feasibility of the ePAD for forensic application was successfully demonstrated through the detection of midazolam in different beverages (water, beer, liquor, and vodka). The intended application revealed low interference of other compounds present in beverages. Based on the achieved results, the proposed ePAD has offered great accuracy with no statistical difference at 95% confidence level from the data recorded by high performance liquid chromatography. The operational simplicity and the robustness ensured by the assembling on a reusable 3D printed holder make the ePAD drawn on sandpaper platform a powerful and promising analytical tool for the analysis of "date rape drugs" opening new possibilities for on-site forensic investigations.


Assuntos
Grafite , Preparações Farmacêuticas , Estupro , Bebidas , Técnicas Eletroquímicas , Eletrodos , Impressão Tridimensional , Reprodutibilidade dos Testes
13.
Analyst ; 146(11): 3463-3473, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075939

RESUMO

Heavy metals are the main pollutants present in aquatic environments and their presence in human organisms can lead to many different diseases. While many methods exist for analysis, colorimetric and electrochemistry are particularly attractive for on-site analysis and their integration on a single platform can improve multiplexed metals analysis. This report describes for the first time a "plug-and-play" (PnP) assembly for coupling a microfluidic paper-based device (µPAD) and a screen-printed electrochemical paper-based device (ePAD) using a vertical and reversible foldable mechanism for multiplexed detection of Fe, Ni, Cu, Zn, Cd and Pb in river water samples. The integration strategy was based on a reversible assembly, allowing the insertion of a pretreatment zone to minimize potential chemical interfering agents and providing a better control of the aspirated sample volume as well as to a lower sample evaporation rate. In comparison with lateral flow and electrochemical assays performed using independent devices, the integrated prototype proved that the reversible coupling mechanism does not interfere on the analytical performance (95% confidence interval). The limit of detection (LOD) values calculated for metals determined varied from 0.1 to 0.3 mg L-1 (colorimetric) and from 0.9 to 10.5 µg L-1 (electrochemical). When compared to other integrated devices based on horizontal designs, the use of a foldable coupling mechanism offered linear response in a lower concentration range and better LOD values for Fe, Ni and Cu. The proposed method successfully measured heavy metals in river water samples with concentrations ranging from 16 to 786 µg L-1, with recovery studies ranging from 76 to 121%. The new method also showed good correlation with conventional atomic absorption spectroscopic methods (95% significance level). Thus, the integration of µPADs and ePADs by a vertical folding mechanism was efficient for multiplexed heavy metal analysis and could be exploited for environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA