Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
3.
Neurotox Res ; 41(6): 559-570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515718

RESUMO

Quinolinic acid (QUIN) is a toxic compound with pro-oxidant, pro-inflammatory, and pro-apoptotic actions found at high levels in the central nervous system (CNS) in several pathological conditions. Due to the toxicity of QUIN, it is important to evaluate strategies to protect against the damage caused by this metabolite in the brain. In this context, coenzyme Q10 (CoQ10) is a provitamin present in the mitochondria with a protective role in cells through several mechanisms of action. Based on these, the present study was aimed at evaluating the possible neuroprotective role of CoQ10 against damage caused by QUIN in the striatum of young Wistar rats. Twenty-one-day-old rats underwent a 10-day pretreatment with CoQ10 or saline (control) intraperitoneal injections and on the 30th day of life received QUIN intrastriatal or saline (control) administration. The animals were submitted to behavior tests or euthanized, and the striatum was dissected to neurochemical studies. Results showed that CoQ10 was able to prevent behavioral changes (the open field, object recognition, and pole test tasks) and neurochemical parameters (alteration in the gene expression of IL-1ß, IL-6, SOD, and GPx, as well as in the immunocontent of cytoplasmic Nrf2 and nuclear p-Nf-κß) caused by QUIN. These findings demonstrate the promising therapeutic effects of CoQ10 against QUIN toxicity.


Assuntos
Ácido Quinolínico , Ubiquinona , Ratos , Animais , Ubiquinona/farmacologia , Ratos Wistar , Ácido Quinolínico/toxicidade , Oxirredução , Estresse Oxidativo
4.
Mol Neurobiol ; 60(9): 5468-5481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314655

RESUMO

Homocysteine (Hcy) is a risk factor for neurodegenerative diseases, such as Alzheimer's Disease, and is related to cellular and tissue damage. In the present study, we verified the effect of Hcy on neurochemical parameters (redox homeostasis, neuronal excitability, glucose, and lactate levels) and the Serine/Threonine kinase B (Akt), Glucose synthase kinase-3ß (GSK3ß) and Glucose transporter 1 (GLUT1) signaling pathway in hippocampal slices, as well as the neuroprotective effects of ibuprofen and rivastigmine alone or in combination in such effects. Male Wistar rats (90 days old) were euthanized and the brains were dissected. The hippocampus slices were pre-treated for 30 min [saline medium or Hcy (30 µM)], then the other treatments were added to the medium for another 30 min [ibuprofen, rivastigmine, or ibuprofen + rivastigmine]. The dichlorofluorescein formed, nitrite and Na+, K+-ATPase activity was increased by Hcy at 30 µM. Ibuprofen reduced dichlorofluorescein formation and attenuated the effect of Hcy. The reduced glutathione content was reduced by Hcy. Treatments with ibuprofen and Hcy + ibuprofen increased reduced glutathione. Hcy at 30 µM caused a decrease in hippocampal glucose uptake and GLUT1 expression, and an increase in Glial Fibrillary Acidic Protein-protein expression. Phosphorylated GSK3ß and Akt levels were reduced by Hcy (30 µM) and co-treatment with Hcy + rivastigmine + ibuprofen reversed these effects. Hcy toxicity on glucose metabolism can promote neurological damage. The combination of treatment with rivastigmine + ibuprofen attenuated such effects, probably by regulating the Akt/GSK3ß/GLUT1 signaling pathway. Reversal of Hcy cellular damage by these compounds may be a potential neuroprotective strategy for brain damage.


Assuntos
Fármacos Neuroprotetores , Ratos , Animais , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rivastigmina/farmacologia , Ibuprofeno/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Ratos Wistar , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Glutationa/metabolismo , Glucose/metabolismo , Homocisteína
5.
Respir Physiol Neurobiol ; 309: 104002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36566004

RESUMO

Acute lung injury (ALI) is a disease of high prevalence and is characterized by the excessive production of inflammatory mediators in the lungs of people sick. Inflammation is the major characteristic of ALI and studies report that inhibition of inflammatory cytokines could be an alternative treatment. Statins such as Simvastatin (SV) are known to their use for cholesterol reduction but also for inflammatory and immunoregulatory processes. In this study, we evaluated the effects of SV on LPS-induced alveolar macrophages and in ALI mice model. Our study has demonstrated the protective effects of SV on LPS-activated alveolar macrophages RAW 264.7 and LPS-induced ALI in mice. SV treatment significantly inhibited the alveolar macrophages activation by decreasing the iNOS, IL-1ß, and IL-6 gene expression in vitro and in vivo. The treatment also decreased the inflammatory cells migration and the cytokines gene expression. Our findings suggest that SV can act as an anti-inflammatory agent for acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Sinvastatina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo
6.
Life Sci ; 310: 121084, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257458

RESUMO

AIMS: Throughout gestation, proteins in the diet are a source of essential amino acids that are crucial for proper healthy fetal growth and development. The present study was proposed to investigate the effect of high-protein diet consumption throughout pregnancy on redox homeostasis, neuroinflammatory status and amino acid levels, including homocysteine, in the male adolescent rats offspring's cerebral cortex. We also performed a battery of behavioral tests to evaluate maternal care, olfactory preference, exploratory capacity, habituation, memory, anxiety- and depression-like behavior motor activity in the offspring. MAIN METHODS: After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet containing 20 % protein, and group 2, the high-protein diet containing 50 % protein. Throughout the gestational period, the pregnant rats received experimental diets. KEY FINDINGS: Results showed an increase in homocysteine levels and neuroinflammatory mediators in the offspring's cerebral cortex from pregnant rats supplemented with a high-protein diet throughout pregnancy. Besides decreasing histidine levels in offspring's serum. The results also revealed an impairment in memory and motricity and an increase in anxiety-like behavior in the offspring supplemented with a high-protein diet throughout pregnancy. Our findings showed a significant effect of high-protein diet consumption throughout pregnancy on offspring's neurobiochemistry, which can negatively impact behavioral performance. SIGNIFICANCE: Our results reinforce the importance of consuming a balanced diet during the gestational period, especially macronutrients such as proteins since the fetus is sensitive to the mother's diet during pregnancy which may impact the development of the offspring.


Assuntos
Doenças Neuroinflamatórias , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Animais , Ratos , Masculino , Fenômenos Fisiológicos da Nutrição Pré-Natal , Dieta/efeitos adversos , Ansiedade/etiologia , Homocisteína
7.
Mol Neurobiol ; 59(7): 4517-4534, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35578101

RESUMO

Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.


Assuntos
Hiper-Homocisteinemia , Acetilcolinesterase/metabolismo , Animais , Homocisteína , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/tratamento farmacológico , Ibuprofeno , Inflamação/complicações , Inflamação/tratamento farmacológico , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Rivastigmina/farmacologia , Rivastigmina/uso terapêutico , Sinapsinas/metabolismo
8.
Neurobiol Learn Mem ; 192: 107637, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598825

RESUMO

Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder. Since it is not yet known whether MPH can be administered in childhood without consequences in adulthood, in the present study we proposed to investigate the effects of chronic early treatment with MPH after a long period of discontinuation. Wistar male rats were injected with MPH (2 mg/kg, intraperitoneally) or saline solution once daily from 15th to 44th day of life. Two months after the last MPH administration, we evaluated the animal's performances on a battery of behavior tests. We also tested Na+,K+-ATPase and acetylcholinesterase activities in prefrontal cortex and hippocampus, which may be associated with behavior. Rats treated with MPH during peri-adolescence show changes in exploratory behavior in adulthood in the open field but not in the elevated plus maze and light-dark transition tests. MPH-treated rats showed a lower latency to find the platform in the training phase, as well as a better performance in the test phase in the Morris water maze test. No differences were observed in the object recognition index and working memory. Acetylcholinesterase was increased in prefrontal cortex and hippocampus, while Na+,K+-ATPase was increased only in hippocampus. These findings provide additional evidence that early-life exposure to MPH can have complex effects in adulthood and new basis for understanding the behavioral and neurochemical consequences associated with chronic use of MPH during the development of central nervous system.


Assuntos
Estimulantes do Sistema Nervoso Central , Comportamento Exploratório , Metilfenidato , ATPase Trocadora de Sódio-Potássio , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Metilfenidato/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Neurotox Res ; 40(2): 473-484, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35239160

RESUMO

Quinolinic acid (QUIN) is an important agonist of NMDA receptors that are found at high levels in cases of brain injury and neuroinflammation. Therefore, it is necessary to investigate neuroprotection strategies capable of neutralizing the effects of the QUIN on the brain. Coenzyme Q10 (CoQ10) is a provitamin that has an important antioxidant and anti-inflammatory action. This work aims to evaluate the possible neuroprotective effect of CoQ10 against the toxicity caused by QUIN. Striatal slices from 30-day-old Wistar rats were preincubated with CoQ10 25-100 µM for 15 min; then, QUIN 100 µM was added to the incubation medium for 30 min. A dose-response curve was used to select the CoQ10 concentration to be used in the study. Results showed that QUIN caused changes in the production of ROS, nitrite levels, activities of antioxidant enzymes, glutathione content, and damage to proteins and lipids. CoQ10 was able to prevent the effects caused by QUIN, totally or partially, except for damage to proteins. QUIN also altered the activities of electron transport chain complexes and ATP levels, and CoQ10 prevented totally and partially these effects, respectively. CoQ10 prevented the increase in acetylcholinesterase activity, but not the decrease in the activity of Na+,K+-ATPase caused by QUIN. We also observed that QUIN caused changes in the total ERK and phospho-Akt content, and these effects were partially prevented by CoQ10. These findings suggest that CoQ10 may be a promising therapeutic alternative for neuroprotection against QUIN neurotoxicity.


Assuntos
Antioxidantes , Ácido Quinolínico , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Metabolismo Energético , Homeostase , Oxirredução , Ácido Quinolínico/toxicidade , Ratos , Ratos Wistar , Transdução de Sinais , Ubiquinona/farmacologia
10.
EBioMedicine ; 77: 103891, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220042

RESUMO

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Assuntos
Bronquiolite , COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Bronquiolite/tratamento farmacológico , Bronquiolite/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Lactente , Pulmão/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2
11.
Mol Neurobiol ; 59(4): 2150-2170, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044624

RESUMO

Pregnancy diet can impact offspring's neurodevelopment, metabolism, redox homeostasis, and inflammatory status. In pregnancy, folate demand is increased due to the requirement for one-carbon transfer reactions. The present study was proposed to investigate the effect of folic acid supplementation throughout pregnancy on a battery of behavior tests (olfactory preference, motor activity, exploratory capacity, habituation, memory, anxiety- and depression-like behavior). Redox homeostasis and neuroinflammatory status in cerebral cortex were also investigated. After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy impaired memory and motricity of the offspring when compared with control (standard diet). It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrite levels increased in cerebral cortex of the offspring, when compared to control group. In contrast, iNOS expression and immunocontent were not altered. Moreover, we identify an increase in TNF-α, IL-1ß, IL-6, IL-10, and MCP-1 gene expression in the cerebral cortex. In conclusion, our study showed that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy may cause behavioral and biochemical changes in the male offspringGraphical abstract After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that folic acid supplementation did not impair the mother-pup relationship. We showed that supplemented diet with 4 mg/kg diet of folic acid during pregnancy impairs memory and motricity of the offspring when compared with standard diet. It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrative stress and neuroinflammation parameters were increased in the cerebral cortex of the offspring. ROS, reactive oxygen species.


Assuntos
Deficiência de Ácido Fólico , Efeitos Tardios da Exposição Pré-Natal , Animais , Suplementos Nutricionais , Feminino , Ácido Fólico/farmacologia , Deficiência de Ácido Fólico/complicações , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos
12.
Metab Brain Dis ; 37(4): 911-926, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35059965

RESUMO

Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1ß release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.


Assuntos
Acetilcolinesterase , Asma , Animais , Ansiedade , Asma/induzido quimicamente , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos
13.
Neurotox Res ; 39(6): 1830-1845, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797528

RESUMO

Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.


Assuntos
Ansiedade/induzido quimicamente , Glucose/metabolismo , Metilfenidato/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Ansiedade/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar
14.
Exp Lung Res ; 47(8): 355-367, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34468256

RESUMO

PURPOSE: Eosinophils are one of the main cells responsible to the inflammatory response in asthma by the release of inflammatory molecules such as cytokines, reactive oxygen species (ROS), cytotoxic granule, eosinophil extracellular trap (EET), and lipid mediators as cysteinyl leukotriene (cysLT). The interconnections between these molecules are not fully understood. Here, we attempted to investigate the cysLT participation in the mechanisms of EET formation in an asthma model of OVA challenge. MATERIALS AND METHODS: Before intranasal challenge with OVA, BALB/cJ mice were treated with a 5-lipoxygenase-activating protein (FLAP) inhibitor (MK-886), or with a cysLT1 receptor antagonist (MK-571) and the lung and bronchoalveolar lavage fluid (BALF) were analyzed. RESULTS: We showed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in inflammatory cells, goblet cells hyperplasia, and eosinophil peroxidase (EPO) activity in the airway. However, only OVA-challenged mice treated with MK-571 had an improvement in lung function. Also, treatments with MK-886 or MK-571 decreased Th2 cytokines levels in the airway. Moreover, we observed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in EET formation in BALF. We also verified that EET release was not due to cell death because the cell viability remained the same among the groups. CONCLUSION: We revealed that the decrease in cysLT production or cysLT1 receptor inhibition by MK-886 or/and MK-571 treatments, respectively reduced EET formation in BALF, showing that cysLT regulates the activation process of EET release in asthma.


Assuntos
Asma , Armadilhas Extracelulares , Receptores de Leucotrienos , Animais , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Eosinófilos , Antagonistas de Leucotrienos/farmacologia , Leucotrienos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C
15.
Parasitol Res ; 119(11): 3719-3728, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32955617

RESUMO

This study aimed to evaluate the effects of early-life exposure to different extracts of Angiostrongylus cantonensis (A. cantonensis) on airway inflammation in an allergic asthma model. The total soluble extract (TE) and the soluble extracts of the digestive (AcD), reproductive (AcR), and cuticle (AcC) systems of A. cantonensis were used for immunisation before ovalbumin (OVA)-sensitisation/challenge in an OVA-induced allergic asthma model. The initial hypothesis of the study was that some soluble extract of the systems (AcD, AcR, or AcC) could be more potent to the modulation of inflammation than the TE. Our data, however, shows that immunisation with the TE is more promising because it decreased the high influx of inflammatory cells on airways and promoted an increase of interferon-γ (IFN-ɣ) and interleukin-10 (IL-10) levels. Besides this, the immunisation with the TE also led to a reduction of goblet cells and mucus overproduction in the lung tissue of asthmatic mice. We believe that the extracts have a distinct capacity to modulate the immune system, due to the TE possessing a greater variability of molecules, which together leads to control of airway inflammation. In conclusion, this is the first study to reveal that the TE of A. cantonensis adult worms has a greater potential for developing a novel therapeutic for allergic asthma.


Assuntos
Angiostrongylus cantonensis/metabolismo , Asma/imunologia , Imunomodulação , Angiostrongylus cantonensis/anatomia & histologia , Animais , Asma/induzido quimicamente , Asma/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Inflamação , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Mucosa Respiratória/metabolismo
16.
Braz Dent J ; 31(3): 252-256, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32667514

RESUMO

The purpose of this study was to investigate and to compare the physical-mechanical properties of a resin-modified calcium silicate material (TheraCal LC), used for pulp-capping, to MTA (Angelus) and a calcium hydroxide cement (Dycal). Specimens of each material (n=12) were prepared in Teflon molds (3.58 mm x 3 mm) and measured before and after immersion in distilled water for 24 h and 30 days to evaluate the dimensional change. The same specimens were submitted to compressive strength test on a Universal Testing Machine (Instron) (1 mm/min). Root canals were filled with the cements (n=8), and after 24 h, the bond strength (push-out test) to dentin was also assessed on a Universal Testing Machine (1 mm/min). Eight additional specimens of TheraCal LC were prepared to evaluate the bond strength immediately after light curing. Data were analyzed using One-Way ANOVA, and Tukey or Bonferroni post hoc tests (p<0.05). Percentage expansion of TheraCal LC was above the Specification No. 57 of ANSI/ADA, in both periods. The dimensional change for TheraCal LC was higher than MTA in 24 h and 30 days; and Dycal in 30 days (p<0.05). TheraCal LC had higher compressive and bond strength to dentin in comparison with MTA and Dycal (p<0.05). Although TheraCal LC expanded more than the ANSI/ADA recommendation, its compressive and push-out bond strength to dentin were satisfactory and superior to MTA and Dycal.


Assuntos
Capeamento da Polpa Dentária , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Compostos de Alumínio , Compostos de Cálcio , Combinação de Medicamentos , Teste de Materiais , Óxidos , Silicatos
17.
Metab Brain Dis ; 35(5): 765-774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189127

RESUMO

During chronic inflammatory disease, such asthma, leukocytes can invade the central nervous system (CNS) and together with CNS-resident cells, generate excessive reactive oxygen species (ROS) production as well as disbalance in the antioxidant system, causing oxidative stress, which contributes a large part to neuroinflammation. In this sense, the aim of this study is to investigate the effects of treatment with neostigmine, known for the ability to control lung inflammation, on oxidative stress in the cerebral cortex of asthmatic mice. Female BALB/cJ mice were submitted to asthma model induced by ovalbumin (OVA). Control group received only Dulbecco's phosphate-buffered saline (DPBS). To evaluate neostigmine effects, mice received 80 µg/kg of neostigmine intraperitoneally 30 min after each OVA challenge. Our results revealed for the first time that treatment with neostigmine (an acetylcholinesterase inhibitor that no crosses the BBB) was able to revert ROS production and change anti-oxidant enzyme catalase in the cerebral cortex in asthmatic mice. These results support the communication between the peripheral immune system and the CNS and suggest that acetylcholinesterase inhibitors, such as neostigmine, should be further studied as possible therapeutic strategies for neuroprotection in asthma.


Assuntos
Asma/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Inibidores da Colinesterase/farmacologia , Neostigmina/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Asma/induzido quimicamente , Asma/patologia , Líquido da Lavagem Broncoalveolar , Catalase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Feminino , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Neostigmina/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Ovalbumina , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase-1/metabolismo
18.
Expert Rev Anti Infect Ther ; 18(4): 381-387, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067521

RESUMO

Objectives: Cutaneous leishmaniasis is a neglected disease, associated with high morbidity, which is partially due to the toxicity of available therapies. The pentavalent antimonial derivatives intralesional infiltration has proven to be as effective as the intravenous drug-based therapy, however, there is a lack of robust safety data.Methods: Phase II, uncontrolled, unicenter clinical trial to assess the safety profile of a standardized meglumine antimionate intralesional therapy, based on weekly infiltrations.Results: Fifty-three patients were studied, predominantly men (60%) and young adults (43.7 ± 17.1 years). Overall, 86.9% of the patients had at least one clinical adverse event. Local events were the most frequent (83%), followed by systemic ones (47.3%). Fourteen participants (26%) presented biochemical abnormalities. In all cases, laboratorial alterations were classified as mild and treatment discontinuation was not required. Differently, the two hypersensitivity (3.8%) reactions observed led to permanent treatment interruption. QTc interval prolongation was recorded in 14 patients (25.5%). The following risk associations to adverse events were identified in the multiple analysis: hypertension with systemic clinical events and smoking with QT interval prolongation.Expert commentary: In general, MA-IL was well tolerated and although associated with local and systemic adverse events, there was a low risk of high intensity or severe complications.


Assuntos
Antiprotozoários/administração & dosagem , Leishmaniose Cutânea/tratamento farmacológico , Antimoniato de Meglumina/administração & dosagem , Adulto , Antiprotozoários/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Feminino , Humanos , Injeções Intralesionais , Masculino , Antimoniato de Meglumina/efeitos adversos , Pessoa de Meia-Idade , Risco
19.
J Cell Physiol ; 235(9): 6073-6084, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31970778

RESUMO

Acute lung injury (ALI) is an inflammatory process, and has high incidence and mortality. ALI and the acute respiratory distress syndrome are two common complications worldwide that result in acute lung failure, sepsis, and death. Pro-inflammatory substances, such as cytokines and chemokines, are responsible for activating the body's defense mechanisms and usually mediate inflammatory processes. Therefore, the research of substances that decrease the uncontrolled response of organism is seen as potential for patients with ALI. Octyl gallate (OG) is a phenolic compound with therapeutic actions namely antimicrobial, antiviral, and antifungal. In this study, we evaluated its action on lipopolysaccharide (LPS)-activated alveolar macrophages RAW 264.7 cells and ALI in male mice. Our results demonstrated protective effects of OG in alveolar macrophages activated with LPS and mice with ALI. The OG treatment significantly decreased the inflammatory markers in both studies in vitro and in vivo. The data suggested that OG can act as an anti-inflammatory agent for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ácido Gálico/análogos & derivados , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Ácido Gálico/farmacologia , Humanos , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
20.
J Cell Physiol ; 235(2): 1838-1849, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31332773

RESUMO

Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1ß, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.


Assuntos
Asma/imunologia , Inflamação/imunologia , Neuroimunomodulação/fisiologia , Estresse Oxidativo/imunologia , Animais , Asma/metabolismo , Asma/patologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neostigmina/farmacologia , Neuroimunomodulação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA