Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179891

RESUMO

The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.

2.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979984

RESUMO

Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.


Assuntos
Antifúngicos , Candida , Testes de Sensibilidade Microbiana , Propafenona , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Propafenona/farmacologia , Humanos , Itraconazol/farmacologia , Sinergismo Farmacológico , Farmacorresistência Fúngica/efeitos dos fármacos , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Reposicionamento de Medicamentos
3.
J Med Microbiol ; 72(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37801011

RESUMO

Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.


Assuntos
Antifúngicos , Fluconazol , Humanos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Candida , Minociclina/farmacologia , Doxiciclina/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
4.
J Med Microbiol ; 72(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36762524

RESUMO

Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.


Assuntos
Candida , Candidíase , Humanos , Sertralina/farmacologia , Sertralina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Biofilmes , Testes de Sensibilidade Microbiana , Candida albicans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA