Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(12): 100479, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37981011

RESUMO

Oncosterone (6-oxo-cholestane-3ß,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or ß- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3ß,5α,6ß-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3ß,26-diol), 27H-CT ((25R)-cholestane-3ß,5α,6ß,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3ß,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.


Assuntos
Neoplasias da Mama , Oxisteróis , Humanos , Feminino , Hidroxilação , Colesterol/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/metabolismo , Colestanotriol 26-Mono-Oxigenase
2.
J Steroid Biochem Mol Biol ; 234: 106396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683773

RESUMO

Cholestane-3ß,5α,6ß-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11ß-hydroxysteroid-dehydrogenase of type 2 (11ß-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6ß-diol-3ß-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6ß-diol-3ß-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11ß-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.


Assuntos
Neoplasias da Mama , Doenças Neurodegenerativas , Humanos , Feminino , Sulfatos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Colesterol/metabolismo , Esteróis
3.
J Steroid Biochem Mol Biol ; 232: 106346, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321513

RESUMO

Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Incidência , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Fatores de Risco
4.
J Pers Med ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37240924

RESUMO

Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.

5.
Autophagy ; 19(3): 1036-1038, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063487

RESUMO

Normal cells secrete small extracellular vesicles (sEV), containing exosomes and/or ectosomes, which play a beneficial role in monitoring tissue integrity and immune response, whereas cancer cells constitutively secrete sEV, which contribute to inhibit the immune defenses and promote tumor progression and aggressiveness. Therefore, there is a great interest in reprograming tumor sEV functions toward normal ones. We hypothesized that this could be realized by inducing tumor cell re-differentiation with dendrogenin A (DDA), an endogenous oxysterol and a ligand of NR1 H/LXR (nuclear receptor subfamily 1 group H). At low doses, DDA induces tumor cell differentiation, tumor growth inhibition and immune cell infiltration into tumors. At high doses, DDA induces lethal macroautophagy/autophagy in tumors by increasing LC3 expression at the mRNA and protein level, through NR1H2/LXRß. In the present study, we showed that low doses of DDA re-differentiate tumor cells by interacting with NR1H2. This results in an increased formation of multivesicular bodies (MVB) in tumor cells and an enhanced secretion of LC3-II-associated exosome-enriched sEV, with immune and anticancer properties. This study highlights the original LC3-II-associated exosome secretory pathway driven by the DDA-NR1H2 complex and paves the way to the development of new therapeutic strategies against pro-tumor exosomes.


Assuntos
Exossomos , Neoplasias , Humanos , Receptores X do Fígado/metabolismo , Exossomos/metabolismo , Via Secretória , Autofagia , Neoplasias/metabolismo
6.
J Extracell Vesicles ; 11(4): e12211, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411723

RESUMO

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRß. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.


Assuntos
Exossomos , Neoplasias , Animais , Colestanóis , Colesterol/metabolismo , Exossomos/metabolismo , Imidazóis , Receptores X do Fígado/metabolismo , Camundongos , Neoplasias/tratamento farmacológico
7.
Ageing Res Rev ; 77: 101615, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35351610

RESUMO

Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.


Assuntos
Oxisteróis , Envelhecimento/metabolismo , Colesterol , Humanos , Inflamação , Estresse Oxidativo , Oxisteróis/metabolismo
8.
Cancer Immunol Res ; 9(5): 568-582, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727246

RESUMO

Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Melanoma/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Células Th1/imunologia
9.
Br J Pharmacol ; 178(16): 3248-3260, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32696532

RESUMO

Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRß) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Colesterol/análogos & derivados , Feminino , Humanos , Redes e Vias Metabólicas
10.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053669

RESUMO

Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor ß, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.

11.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610562

RESUMO

Dendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRß, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRß-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML.

12.
J Steroid Biochem Mol Biol ; 194: 105447, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415823

RESUMO

Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.


Assuntos
Colestanóis/análise , Imidazóis/análise , Mama/metabolismo , Neoplasias da Mama/metabolismo , Colestanóis/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Imidazóis/metabolismo
14.
J Steroid Biochem Mol Biol ; 192: 105390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170473

RESUMO

Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Colestanóis/farmacologia , Imidazóis/farmacologia , Radioisótopos do Iodo/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Autoantígenos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Camundongos Nus , Receptores da Tireotropina/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Steroid Biochem Mol Biol ; 190: 173-182, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959154

RESUMO

Liver X receptors (LXRs) α (NR1H3) and ß (NR1H2) are nuclear receptors that have been involved in the regulation of many physiological processes, principally in the control of cholesterol homeostasis, as well as in the control of the cell death and proliferation balance. These receptors are thus promising therapeutic targets in various pathologies such as dyslipidemia, atherosclerosis, diabetes and/or cancers. These receptors are known to be activated by specific oxysterol compounds. The screening for LXR-specific ligands is a challenging process: indeed, these molecules should present a specificity towards each LXR-isoform. Because some natural products have significant effects in the regulation of the LXR-regulated homeostasis and are enriched in flavonoids, we have decided to test in cell culture the effects of 4 selected flavonoids (galangin, quercetin, apigenin and naringenin) on the modulation of LXR activity using double-hybrid experiments. In silico, molecular docking suggests specific binding pattern between agonistic and antagonistic molecules. Altogether, these results allow a better understanding of the ligand binding pocket of LXRα/ß. They also improve our knowledge about flavonoid mechanism of action, allowing the selection and development of better LXR selective ligands.


Assuntos
Flavonoides/farmacologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Apigenina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flavanonas/farmacologia , Células HeLa , Humanos , Receptores X do Fígado/metabolismo , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Relação Estrutura-Atividade
16.
Bioorg Chem ; 87: 181-190, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901673

RESUMO

It has been very recently shown how naturally occurring oxyprenylated coumarins are effective modulators of melanogenesis. In this short communication we wish to generalize the potentialities as skin tanning or whitening agents of a wider panel of natural and semisynthetic aromatic compounds, including coumarins, cinnamic and benzoic acids, cinnamaldehydes, benzaldehyde, and anthraquinone derivatives. A total number of 43 compounds have been tested assaying their capacity to inhibit or stimulate melanin biosynthesis in cultured murine Melan A cells. The wider number of chemicals herein under investigation allowed to depict a detailed structure-activity relationship, as the following: (a) benzoic acid derivatives are slightly pigmenting agent, for which the effect is more pronounced in compounds with longer O-side chains; (b) independently from the type of substitution, cinnamic acids are able to increase melanin biosynthesis, while benzaldehydes are able to decrease it; (c) coumarins with a 3,3-dimethylallyl or shorter skeletons as substituents in position 7 are tanning agents, while coumarins with farnesyloxy groups are whitening ones; (d) double oxyprenylation in position 6 and 7 and 3,3-dimethylallyl or geranyl skeletons have slight depigmenting capacities, while farnesyl skeletons tend to marginally increase the tanning effect; (e) the presence of electron withdrawing groups (acetyl, COOH, and -Cl) and geranyl or farnesyl oxyprenylated chains respectively in positions 3 and 7 of the coumarin nucleus lead to a whitening effect, and finally (f) oxyprenylated anthraquinones have only a weak depigmenting capacity.


Assuntos
Produtos Biológicos/farmacologia , Cumarínicos/farmacologia , Aldeídos/síntese química , Aldeídos/química , Aldeídos/farmacologia , Animais , Antraquinonas/síntese química , Antraquinonas/química , Antraquinonas/farmacologia , Benzoatos/síntese química , Benzoatos/química , Benzoatos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cinamatos/síntese química , Cinamatos/química , Cinamatos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Melaninas/análise , Melaninas/biossíntese , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Molecules ; 24(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704124

RESUMO

Umbelliprenin has recently been shown to have great potential as a skin whitening agent. Wishing to investigate the same effect in plant species known to biosynthesize this coumarin, three plants belonging to the Apiaceae family, namely Anethum graveolens L. (dill), Pimpinella anisum L. (anise), and Ferulago campestris (Besser) Grecescu (field ferula) were screened by HPLC analysis for their respective content of umbelliprenin in extracts obtained with different solvent mixtures and by maceration and ultrasound-assisted processes. EtOH was shown to be the best solvent, providing umbelliprenin yields ranging from 1.7% to 14.4% (with respect to the total amount of extract obtained). Extracts with the highest content of this farnesyloxycoumarin were then assayed as modulators of melanogenesis in cultured murine Melan A cells employing the same umbelliprenin obtained by chemical synthesis as the reference. A parallelism between the content of the coumarin and the recorded depigmenting effect (60% for the EtOH extract of F. campestris as the best value) was revealed for all plants extracts when applied at a dose of 100 µg/mL. Our results demonstrate that the same potential of umbelliprenin can be ascribed also to umbelliprenin-enriched plant extracts which reinforces enforce the widespread use of phyto-preparations for cosmetic purposes (e.g., A. graveolens).


Assuntos
Anethum graveolens/química , Apiaceae/química , Pimpinella/química , Extratos Vegetais/farmacologia , Preparações Clareadoras de Pele/farmacologia , Umbeliferonas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Sementes/química , Preparações Clareadoras de Pele/química , Umbeliferonas/química
18.
Cancer Res ; 78(17): 4803-4808, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120211

RESUMO

Epidemiologic studies are controversial concerning the roles played by cholesterol in cancer risk and development, possibly as it is not cholesterol per se that is pathologic in cancers. Indeed, recent data reveal that the cholesterol metabolism in cancer cells can generate endogenous oncopromoter metabolites at higher levels compared with normal tissues and/or can be deregulated in the production of endogenous oncosuppressor metabolites in an opposite way. These metabolites are oxysterols, which are cholesterol oxygenation products generated by enzymatic and/or autoxidation processes. All these oxysterols are new classes of estrogen, glucocorticoid, or liver X nuclear receptor ligands, and their protumor action on their cognate receptors could explain some drug resistance, while treatment with antitumor metabolites could complement their deficiency in cancers and restore their action on their nuclear receptor. Given that hypercholesterolemia and high intakes of cholesterol-rich foods or processed foods can generate these oxysterols, their importance in cancer risk or development in overweight and obese people is to be considered. The discovery of these cholesterol-derived metabolites and the identification of the nuclear receptors mediating their pro- or antitumor activities are important findings, which should have major implications in the diagnosis, prevention, and treatment of different cancers and open new areas of research. Cancer Res; 78(17); 4803-8. ©2018 AACR.


Assuntos
Colesterol/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Ligantes , Peroxidação de Lipídeos/genética , Metaboloma/genética , Neoplasias/epidemiologia , Neoplasias/etiologia , Obesidade/complicações , Obesidade/epidemiologia , Sobrepeso/complicações , Sobrepeso/epidemiologia , Oxisteróis/metabolismo , Fatores de Risco
19.
J Lipid Res ; 59(8): 1316-1324, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29764923

RESUMO

Intercellular communication has been known for decades to involve either direct contact between cells or to operate via circulating molecules, such as cytokines, growth factors, or lipid mediators. During the last decade, we have begun to appreciate the increasing importance of intercellular communication mediated by extracellular vesicles released by viable cells either from plasma membrane shedding (microvesicles, also named microparticles) or from an intracellular compartment (exosomes). Exosomes and microvesicles circulate in all biological fluids and can trigger biological responses at a distance. Their effects include a large variety of biological processes, such as immune surveillance, modification of tumor microenvironment, or regulation of inflammation. Extracellular vesicles can carry a large array of active molecules, including lipid mediators, such as eicosanoids, proteins, and nucleic acids, able to modify the phenotype of receiving cells. This review will highlight the role of the various lipidic pathways involved in the biogenesis and functions of microvesicles and exosomes.


Assuntos
Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Humanos , Transdução de Sinais
20.
Biochimie ; 153: 139-149, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29654865

RESUMO

Oxygenation products of cholesterol, named oxysterols, were suspected since the 20th century to be involved in carcinogenesis. Among the family of oxysterol molecules, cholesterol-5,6-epoxides (5,6-EC) retained the attention of scientists because they contain a putative alkylating epoxide group. However, studies failed into demonstrating that 5,6-EC were direct carcinogens and revealed a surprising chemical stability and unreactivity towards nucleophiles in standard conditions. Analyses of 5,6-EC metabolism in normal cells showed that they were extensively transformed into cholestane-3ß,5α,6ß-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH). Studies performed in cancer cells showed that CT was additionally metabolized into an oxysterol identified as the 6-oxo-cholestan-3ß,5α-diol (OCDO), by the 11ß-hydroxysteroid dehydrogenase of type 2 (HSD2), the enzyme which inactivates cortisol into cortisone. Importantly, OCDO was shown to display tumor promoter properties in breast cancers, by binding to the glucocorticoid receptor, and independently of their estrogen receptor status, revealing the existence of a new tumorigenic pathway centered on 5,6-EC. In breast tumors from patients, OCDO production as well as the expression of the enzymes involved in the pathway producing OCDO, namely ChEH subunits and HSD2, were higher compared to normal tissues, and overexpression of these enzymes correlate with a higher risk of patient death, indicating that this onco-metabolism is of major importance to breast cancer pathology. Herein, we will review the actual knowledge and the future trends in OCDO chemistry, biochemistry, metabolism and mechanism of action and will discuss the impact of OCDO discovery on new anticancer therapeutic strategies.


Assuntos
Carcinógenos/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA