Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2570, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239437

RESUMO

Searching for actinide decorporation agents with advantages of high decorporation efficiency, minimal biological toxicity, and high oral efficiency is crucial for nuclear safety and the sustainable development of nuclear energy. Removing actinides deposited in bones after intake is one of the most significant challenges remaining in this field because of the instantaneous formation of highly stable actinide phosphate complexes upon contact with hydroxyapatite. Here we report a hydroxypyridinone-based ligand (5LIO-1-Cm-3,2-HOPO) exhibiting stronger affinity for U(VI) compared with the reported tetradentate hydroxypyridinone ligands. This is further revealed by the first principles calculation analysis on bonding between the ligand and uranium. Both in vitro uranium removal assay and in vivo decorporation experiments with mice show that 5LIO-1-Cm-3,2-HOPO can remove uranium from kidneys and bones with high efficiencies, while the decorporation efficiency is nearly independent of the treatment time. Moreover, this ligand shows a high oral decorporation efficiency, making it attractive for practical applications.


Assuntos
Osso e Ossos/química , Quelantes/administração & dosagem , Piridonas/administração & dosagem , Lesões por Radiação/terapia , Urânio/toxicidade , Adsorção , Animais , Osso e Ossos/metabolismo , Quelantes/química , Feminino , Humanos , Rim/química , Rim/metabolismo , Ligantes , Camundongos , Piridonas/química , Lesões por Radiação/induzido quimicamente , Lesões por Radiação/metabolismo , Urânio/química , Urânio/metabolismo
2.
Talanta ; 196: 515-522, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683399

RESUMO

We report here the investigation of using a luminescent europium organic framework, [Eu2(MTBC)(OH)2(DMF)3(H2O)4]·2DMF·7H2O (denoted as compound 1), for detecting of both Cu2+ and UO22+ with high sensitivity. Based on the spectroscopy analysis, compound 1 could selectively respond to Cu2+ and UO22+ ions among other selected monovalent, divalent, trivalent metal cations based on a turn-off mechanism. The detection limit of compound 1 towards Cu2+ ion was as low as 17.2 µg/L, which is much lower than the maximum tolerable concentration of Cu2+ in drinking water (2 mg/L) defined by United States Environmental Protection Agency. On the other hand, the detection limit towards UO22+ ions is 309.2 µg/L, which could be used for detecting uranium in relative severely contaminated areas. The concentration-dependent luminescence intensity evolution process could be fully understood by the absorption kinetics and isotherm investigations. Furthermore, the quenching mechanism was elucidated by the UV-vis, excitation, luminescence, and lifetime studies. Compound 1, as the first MOF based luminescence probe for both Cu2+ and UO22+ ions, provides insight into developing MOF-based multifunctional sensors for both nonradioactive and radioactive elements.

3.
Dalton Trans ; 47(42): 14908-14916, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30183785

RESUMO

Uranium is unique owing not only to its intriguing physiochemical properties, but also to the diverse coordination chemistry that uranyl adopts and bonding that enables rich and unpredictable topologies of uranium-bearing materials. Six anionic uranium oxyfluorides with various dimensionalities, including a 3D framework (MeUF), four 2D lamellar structures (EtUF-1, PrUF, BuUF-1, and BuUF-2), and a 1D chained topology (EtUF-2), have been rationally constructed by employing tetra-alkyl ammonium ions as structure-directing agents. By combining the tunable interlayer distance of the lamellar structures with the photooxygenation properties of uranyl ions, a bifunctional platform for highly selective ion-exchange and photocatalytic degradation over organic dyes has been developed. Specifically, BuUF-2 can efficiently capture 94.5% methylene blue (MB+) within 24 h from solution with remarkable selectivity related to both the size and the charge of organic dyes. Such size- and charge-dependent selectivity toward organic dyes has been documented for MOFs, but is rare for 2D lamellar materials. Furthermore, the removal of MB+ can be largely accelerated under UV radiation (e.g. 84.7% for BuUF-2 within 1 h) due to the photocatalytic activities of EtUF-1, EtUF-2, PrUF, and BuUF-2.

4.
Nat Commun ; 9(1): 3007, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068903

RESUMO

Direct removal of 99TcO4- from the highly acidic solution of used nuclear fuel is highly beneficial for the recovery of uranium and plutonium and more importantly aids in the elimination of 99Tc discharge into the environment. However, this task represents a huge challenge given the combined extreme conditions of super acidity, high ionic strength, and strong radiation field. Here we overcome this challenge using a cationic polymeric network with significant TcO4- uptake capabilities in four aspects: the fastest sorption kinetics, the highest sorption capacity, the most promising uptake performance from highly acidic solutions, and excellent radiation-resistance and hydrolytic stability among all anion sorbent materials reported. In addition, this material is fully recyclable for multiple sorption/desorption trials, making it extremely attractive for waste partitioning and emergency remediation. The excellent TcO4- uptake capability is elucidated by X-ray absorption spectroscopy, solid-state NMR measurement, and density functional theory analysis on anion coordination and bonding.

5.
Inorg Chem ; 57(15): 8714-8717, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30043611

RESUMO

A luminescent lanthanide metal-organic framework [Tb7(OH)8(H2O)6(IDA)3(COO)3]·4Cl·2H2O (Tb-IDA, IDA = iminodiacetic acid) was hydrothermally synthesized and structurally characterized. Monitoring ultraviolet radiation was achieved by correlating the dosage with the luminescence color change in doped Gd99Tb0.1Eu0.9-IDA compound. A linear relationship is developed across a broad range from blue to yellow within a CIE chromaticity diagram.

6.
Dalton Trans ; 47(26): 8764-8770, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29916520

RESUMO

Deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone, DFP), which is a drug clinically used for removing heavy metals in vivo, was explored for its removal efficiency towards uranium. The reaction of uranyl nitrate hexahydrate with DFP at room temperature yielded the compound [(UO2)(H2O)(C7NO2H8)2]·4H2O (1), which crystallizes from a mixed solution of methanol and water (pH = 7.0). X-ray diffraction shows that the stable complexation of uranyl occurs from the coordination of two bidentate DFP ligands perpendicular to the O[double bond, length as m-dash]U[double bond, length as m-dash]O unit with a fifth coordinating oxygen atom coming from one water molecule, resulting in a pentagonal bipyramidal geometry. The formation constants of uranyl and DFP complexes were measured and the species distribution diagram illustrates that UO2L2 (94.6%) is the dominant uranyl-DFP complex in 0.1 M KCl solution at physiological pH = 7.4. The results from both crystallographic and potentiometric studies imply that the metal : ligand ratio is 1 : 2. The effectiveness of using DFP to remove uranium was examined at the cellular level, and the results suggest that it can significantly reduce the cellular uptake and increase the cellular release of U(vi) in renal proximal tubular epithelial cells (NRK-52E).


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Endocitose/efeitos dos fármacos , Piridonas/química , Termodinâmica , Nitrato de Uranil/química , Animais , Linhagem Celular , Complexos de Coordenação/síntese química , Deferiprona , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Metanol/química , Modelos Moleculares , Cloreto de Potássio/química , Ratos , Água/química
7.
Inorg Chem ; 57(12): 6778-6782, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29869873

RESUMO

Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO4)(H2O)4Cl]Cl·H2O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO4)(H2O)4Cl]+ with Cl- as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th4+ center in TMC are vulnerable to competition with F-, due to the formation of more favorable Th-F bonds compared to Th-OH2. This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

8.
Inorg Chem ; 57(11): 6753-6761, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29792317

RESUMO

By utilizing zinc amalgam as an in situ reductant and pH regulator, mild hydrothermal reaction between UO2(CH3COO)2·2H2O, H2SO4, and Cs2CO3 or between UO2(CH3COO)2·2H2O, C2H4(SO3H)2, and K2CO3 yielded a novel cesium UIV sulfate trimer Cs4[U3O(SO4)7]·2.2H2O (1) and a new potassium UIV disulfonic hexamer K[U6O4(OH)5(H2O)5][C2H4(SO3)2]6·6H2O (2), respectively. Compound 1 features a lamellar structure with a honeycomb lattice, and it represents an unprecedented trimeric UIV cluster composed of purely inorganic moieties. Complex 2 is built from hexanuclear U4+ cores and K+ ions interconnected by µ5-[C2H4(SO3)2]2- groups, leading to the construction of an extended framework rather than commonly observed discrete, neutral molecular sulfonate clusters. The various binding modes of the sulfate and disulfonate groups, especially the multidentate ones, enable additional bridging between metal ions, which promotes oligomerization and isolation of polynuclear species. Furthermore, compound 1 exhibits both ion-exchange properties and the Alexandrite effect, and it is the second example of a uranium complex without chromic functional ligands displaying the latter feature.

9.
J Am Chem Soc ; 140(19): 6146-6155, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29693392

RESUMO

Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.

10.
ACS Appl Mater Interfaces ; 10(18): 15364-15368, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29694784

RESUMO

Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

11.
Chem Commun (Camb) ; 54(35): 4429-4432, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29651483

RESUMO

Although no evident hydrogen-bond network appears, an ultrahigh proton conductivity of 2.91 × 10-2 S cm-1 at 363 K and 90% RH with an ultralow activation energy of 0.10 eV was observed in an anionic lanthanide-organic framework Na2[Eu(SDB)2(COO)]·0.375DMF·0.4H2O (1); both values approach the records among all reported proton-conducting MOF materials. This suggests that the proton conduction process in 1 is reminiscent of the Grotthuss mechanism, which together reveals an effective proton transportation pathway associated with aligned Na+ and their coordinated water.

12.
Angew Chem Int Ed Engl ; 57(26): 7883-7887, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29600818

RESUMO

The combination of high atomic number and high oxidation state in UVI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that UVI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl.

13.
Angew Chem Int Ed Engl ; 57(20): 5783-5787, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29601119

RESUMO

Actinide based metal-organic frameworks (MOFs) are unique not only because compared to the transition-metal and lanthanide systems they are substantially less explored, but also owing to the uniqueness of actinide ions in bonding and coordination. Now a 3D thorium-organic framework (SCU-11) contains a series of cages with an effective size of ca. 21×24 Å. Th4+ in SCU-11 is 10-coordinate with a bicapped square prism coordination geometry, which has never been documented for any metal cation complexes. The bicapped position is occupied by two coordinated water molecules that can be removed to afford a very unique open Th4+ site, confirmed by X-ray diffraction, color change, thermogravimetry, and spectroscopy. The degassed phase (SCU-11-A) exhibits a Brunauer-Emmett-Teller surface area of 1272 m2 g-1 , one of the highest values among reported actinide materials, enabling it to sufficiently retain water vapor, Kr, and Xe with uptake capacities of 234 cm3 g-1 , 0.77 mmol g-1 , 3.17 mmol g-1 , respectively, and a Xe/Kr selectivity of 5.7.

14.
Chem Commun (Camb) ; 54(6): 627-630, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29299560

RESUMO

When exposed to water, the two-dimensional uranyl-organic layered compound [(CH3)2NH2][(UO2)(BCPBA)]·2DMF·H2O (H3BCPBA = 3,5-bis (4'-carboxylphenoxy) benzoic acid) gradually undergoes a complete single-crystal-to-single-crystal phase transition to [(CH3)2NH2][(UO2)(BCPBA)]·3.4H2O, resulting in an enhanced ligand-ligand interaction between the adjacent layers. This process gives rise to initial quenching of the uranyl photoluminescence followed by subsequent recovery of the photoluminescence with a much elevated intensity, as a unique case of aggregation-induced emission in an extended solid system, further confirmed by DFT analysis on bonding.

15.
Inorg Chem ; 57(3): 903-907, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29320167

RESUMO

The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na2UV2(HPO3)6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

16.
ACS Appl Mater Interfaces ; 10(5): 4844-4850, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29308875

RESUMO

The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO2(L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10-7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

17.
Inorg Chem ; 57(3): 1676-1683, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345469

RESUMO

The exploration of phase formation in the f-element-bearing iodate selenate system has resulted in 14 novel rare-earth-containing iodate selenates, Ln(IO3)(SeO4) (Ln = La, Ce, Pr, Nd; LnISeO-1), Ln(IO3)(SeO4)(H2O) (Ln = Sm, Eu; LnISeO-2), and Ln(IO3)(SeO4)(H2O)2·H2O (Ln = Gd, Dy, Ho, Er, Tm, Yb, Lu, Y; LnISeO-3), as well as two new thorium iodate selenates, Th(OH)(IO3)(SeO4)(H2O) (ThISeO-1) and Th(IO3)2(SeO4) (ThISeO-2). LnISeO-3 and ThISeO-2 crystallize in the chiral space group P212121, while LnISeO-1, LnISeO-2, and ThISeO-1 crystallize in the centrosymmetric space group P21/c. The numbers of both coordinating and hydrating water molecules crystallized in LnISeO-1, LnISeO-2, and LnISeO-3 increase along these three series, in line with the increasingly negative values of hydration enthalpies of heavier trivalent lanthanide ions. Such a systematic change in compositions, especially the first coordination sphere of Ln, further induces structural rearrangements, including coordination number and dimensional reductions. More specifically, the structures of LnISeO-1, LnISeO-2, and LnISeO-3 have undergone transitions from 2D Ln-oxo layers with 10-coordinate Ln centers to 1D Ln-oxo chains with 9-coordinate Ln centers and then to 0D Ln-oxo monomers with 8-coordinate Ln centers, respectively. The formation and characterization of this large family of Ln/Th iodate selenates suggest that such a mixed-anion system not only exhibits richer structural chemistry but also can be capable of generating intriguing properties, such as the second-harmonic generation (SHG) effect.

18.
Inorg Chem ; 57(2): 575-582, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29297683

RESUMO

There have been numerous studies on emission-color regulation by the adjustment of molar amounts of multiple trivalent lanthanide cations, such as Eu3+, Tb3+, Dy3+, and others, in many types of solid host materials. Although uranyl emission originating from charge-transfer transitions has been well-recognized and investigated for many decades, as of now there is no report on tunable 4f/5f bimodal emission based on heterobimetallic lanthanide(III) and uranyl(VI) compounds. In most cases, complete energy transfer between uranyl(VI) and lanthanide(III) centers was observed. In this work, a series of isotypic-europium-incorporated uranyl coordination polymers, Eu@UO2L(DMF) (L2- = 3,5-pyridinedicarboxylate, denoted as 1-10, which represent the different Eu contents in UO2L(DMF); DMF = N,N-dimethylformamide), has been synthesized by solvothermal reactions. Crystallographic evidence of this series unveiled one-dimensional chains of UO22+ as pentagonal-bipyramidal units bridged by pyridinedicarboxylate with no defined, crystallographically unique site containing Eu, even for the products with high concentrations of Eu in this series. However, emission bands characteristic of Eu3+ were clearly observed in every product along with the characteristic uranyl-emission feature when observed with UV-vis fluorescence spectroscopy. Laser-ablation inductively coupled plasma mass spectrometry indicated that europium was concomitant with uranium, corroborating the incorporation of europium into crystals of UO2L(DMF). Systematic control of the solvent ratio (VH2O/VDMF) in each reaction gives rise to an enrichment of Eu3+ in the interior of UO2L(DMF). In addition, the color of emission of these compounds changed significantly from bright red to bright green with decreasing Eu content. This phenomenon occurs from the highly efficient energy transfer between the UO22+ and Eu3+ centers within each sample, providing the first case of a tunable 4f/5f bimodal emission in a mixed 4f/5f-elements-bearing metal-organic-hybrid material.

19.
Dalton Trans ; 47(3): 649-653, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29211078

RESUMO

We present a depleted uranium-based metal organic framework, UO2(C8H3O6N)·DMF, that exhibits highly sensitive and selective detection towards Fe3+ ions in aqueous media with an extremely low detection limit of 6.3 ppb. This work offers insight into exploring the potential applications of actinide-based metal organic frameworks in the area of chemical sensing with intrinsic advantages of high selectivity and sensitivity.

20.
Dalton Trans ; 46(47): 16381-16386, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29098215

RESUMO

In this Frontier article, we pursue the sequestration of radionuclides from aqueous solution by using recently emerging metal-organic framework (MOF) materials. The design of MOF materials and their corresponding sorption properties towards radionuclides (137Cs, 90Sr, 238U, 79Se, and 99Tc) as well as their interaction mechanisms are highlighted. The present challenges and future prospects of removing radionulides with MOFs as sorbents are also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA