Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(7): 247, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869651

RESUMO

The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mineração , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Arsênio/análise , História do Século XIX , Austrália , História do Século XX
2.
Aquat Toxicol ; 272: 106963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776608

RESUMO

Contaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish. Wild-type embryos at 24 h post-fertilisation were exposed to Cu (2 µg L-1 to 120 µg L-1) for 96 h and the number of healthy larvae were determined based on larvae that had hatched and did not display loss of equilibrium (LOE). The effect concentrations where Cu caused a 10 % (EC10) or 50 % (EC50) decrease in the number of healthy larvae were calculated as 3.7 µg L-1 and 10.9 µg L-1, respectively. Proteomics analysis of embryos exposed to the EC10 and EC50 concentrations of Cu revealed the proteome to differ more strongly after 48 h than 96 h, suggesting the acclimatisation of some larvae. Exposure to excess Cu caused differentially expressed proteins (DEPs) involved in oxidative stress, mitochondrial respiration, and neural transduction as well as the modulation of the AAs (Proline, Glycine and Alanine). This is the first study to suggest that LOE displayed by Cu-stressed fish may involve the disruption to GABAergic proteins and the calcium-dependent inhibitory neurotransmitter GABA. Moreover, this study highlights that proteomics and AA analysis can be used to identify potential biomarkers for environmental monitoring.


Assuntos
Cobre , Larva , Proteoma , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Cobre/toxicidade , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos , Larva/metabolismo , Aminoácidos/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo
3.
Water Res ; 237: 119975, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104936

RESUMO

River regulation by dams can alter flow regimes and organic matter dynamics, but less is known about how unregulated tributaries regulate organic matter composition and processing in the regulated river below the confluence. This study reports on water chemistry, especially dissolved organic matter (DOM) concentration and composition (dissolved organic carbon (DOC), organic nitrogen (DON), organic phosphorus (DOP) and combined amino acids (DCAA)) along the regulated Tumut and unregulated Goobarragandra (tributary) rivers under different flow conditions (base flow vs storm event) in south-east Australia. The tributary was significantly different from regulated and downstream sites during base flow conditions with higher temperature, pH, buffering capacity, DOC and nutrient concentrations (DON, DOP, DCAA). DOM characterisation by spectrometry and size exclusion chromatography revealed that the tributary contained a higher proportion of terrestrially derived humic-like and fulvic-like DOM. In contrast, regulated and downstream sites contained higher proportion of microbially derived DOM such as low molecular weight neutrals and protein-like components. Storm pulses of tributary flows into the regulated system, influenced both concentration and composition of DOM at the downstream site, which more strongly resembled the tributary site than the regulated site during the storm event. Additionally, we found that the tributary supplied fresh DOM, including small organic molecules to the regulated system during storm events. The presence of these different types of labile DOM can increase primary productivity and ecological functioning within regulated river reaches downstream of tributary junctions. This has important implications for the protection of unregulated tributary inflows within regulated river basins.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Nitrogênio/química , Fósforo
4.
Sci Rep ; 13(1): 3254, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828827

RESUMO

In nutritional ecology the intake target is the diet that maximises consumer fitness. A key hypothesis of nutritional ecology is that natural selection has acted upon the behavioural and physiological traits of consumers to result in them Selectively Consuming prey to match the Intake Target (SCIT). SCIT has been documented in some herbivores and omnivores, which experience strong heterogeneity in the nutritional quality of available foods. Although carnivores experience a prey community with a much more homogeneous nutrient composition, SCIT by carnivores has nevertheless been deemed highly likely by some researchers. Here we test for SCIT for micronutrients (amino acids) in two freshwater carnivores: the river blackfish and the two-spined blackfish. Although both blackfishes exhibited non-random consumption of prey from the environment, this resulted in non-random consumption of amino acids in only one species, the river blackfish. Non-random consumption of amino acids by river blackfish was not SCIT, but instead an artefact of habitat-specific foraging. We present hypotheses to explain why wild populations of freshwater carnivores may not exhibit SCIT for amino acids. Our work highlights the need for careful, critical tests of the hypotheses and assumptions of nutritional ecology and its application to wild populations.


Assuntos
Aminoácidos , Comportamento Predatório , Animais , Ecologia , Dieta , Alimentos
5.
Aquat Toxicol ; 248: 106179, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35576718

RESUMO

Copper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood. This study assessed the sublethal toxicity of Cu on purple-spotted gudgeon sacfry (PSG, Mogurnda adspersa). For this purpose, 96 h Cu toxicity bioassays were performed and toxic effects of Cu on PSG were measured at different levels of biological organization, from the individual (loss of equilibrium, wet weight), to tissue (chemical changes in retinal tissue composition) and molecular responses (whole body amino acid (AA) profiles). The EC10 and EC50 (ECx: effect concentration that affected X% of test organisms) were found to be 12 (9 - 15) µg Cu L-1 and 22 (19 - 24) µg Cu L-1, respectively. Copper stress caused a decrease in total amino acid content and changed the AA profile of PSG compared to the controls. Proton-induced X-ray emission (PIXE) mapping techniques showed accumulation of Cu in the retinal tissues disturbing the distribution of other elements such as zinc, sulfur, phosphorus and potassium. Fourier-transform infrared (FTIR) microspectroscopy of control and Cu treated eye tissues revealed a change in protein secondary structure in retinal tissues in response to Cu accumulation, as well as decreased levels of the molecular retinal, consistent with the degradation of rhodopsin, a key protein in the visual sensory system. This is the first study to demonstrate the multi-level responses of PSG arising from exposure to environmentally realistic Cu concentrations and suggests that AA profiling can serve as a useful tool to assess the impacts of metals on fresh-water organisms.


Assuntos
Perciformes , Poluentes Químicos da Água , Aminoácidos , Animais , Cobre/metabolismo , Perciformes/metabolismo , Água , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
6.
Ecotoxicol Environ Saf ; 233: 113336, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228027

RESUMO

Contamination of freshwaters is increasing globally, with microalgae considered one of the most sensitive taxa to metal pollution. Here, we used 72 h bioassays to explore the biochemical effects of copper (Cu) on the amino acid (AA) profile and proteome of Chlorella sp. and advance our understanding of the molecular changes that occur in algal cells during exposure to environmentally realistic Cu concentrations. The Cu concentrations required to inhibit algal growth rate by 10% (EC10) and 50% (EC50) were 1.0 (0.7-1.2) µg L-1 and 2.0 (1.9-2.4) µg L-1, respectively. The AA profile of Chlorella sp. showed increases in glycine and decreases in isoleucine, leucine, valine, and arginine, with increasing Cu. Proteomic analysis revealed the modulation of several proteins involved in energy production pathways, including: photosynthesis, carbon fixation, glycolysis, and oxidative phosphorylation, which likely assists in meeting increased energy demands under Cu-stressed conditions. Copper exposure also caused up-regulation of cellular processes and signalling proteins, and the down-regulation of proteins related to ribosomal structure and protein translation. These changes in biomolecular pathways have direct effects on the AA profile and total protein content and provide an explanation for the observed changes in amino acid profile, cell growth and morphology. This study shows the complex mode of action of Cu on Chlorella under environmentally realistic Cu concentrations and highlights several potential biomarkers for future investigations.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Aminoácidos/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Cobre/análise , Água Doce , Microalgas/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 284: 117536, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261228

RESUMO

Acid mine drainage (AMD) is one of the major environmental problems impacting aquatic ecosystems globally. We studied changes in the community composition of macroinvertebrates and amino acid (AA) profiles of dominant taxa along an AMD contamination gradient within the Dee River, Queensland, Australia to understand how AMD can affect the biomolecular composition of macroinvertebrates. Taxa richness and community composition of macroinvertebrates changed widely along the AMD gradient with significantly lower taxa richness recorded at the polluted sites compared to upstream and downstream sites. The Dipteran families: Chironomidae and Ceratopogonidae, the Odonata family Gomphidae, and the Coleoptera family Dytiscidae were the only families found at all sampling sites and were used here for AA analysis. There were significant variations in the AA profiles among the studied taxa. The AA profile of each taxon also varied among upstream, polluted and downstream sites suggesting that contamination of a river system with acid mine drainage not only alters the overall macroinvertebrate community composition but also significantly influences the AA profile of organisms that are tolerant to AMD. This study highlights the potential of using AA profiling to study the response of aquatic organisms to contamination gradients such as those associated with AMD.


Assuntos
Ecossistema , Invertebrados , Aminoácidos , Animais , Austrália , Monitoramento Ambiental , Humanos , Queensland
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117871, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31839576

RESUMO

Dissolved organic matter (DOM) within freshwaters is essential for broad ecosystem function. The concentration and type of DOM within rivers depends on the relative contributions of allochthonous sources and the production and consumption of DOM by microbes. In this work we have examined the temporal patterns in DOM quality and productivity in three lowland rivers in dryland Australia using fluorescence excitation emission scans. We assessed the production and consumption of DOM within light and dark bottle assays to quantify the relative contribution of bacteria and algae to the DOM pool and simultaneously assessed whether the systems were autotrophic or heterotrophic. DOM varied temporally within the three river systems over the course of the study period. Characterisation of DOM within light and dark bottles following a 6-hour incubation revealed microbial consumption of a humic-like component and production of protein-like components similar in nature to the amino acids tryptophan and tyrosine. The lack of a significant difference in DOM quality between the light and dark bottles indicated that the protein-like DOM is likely derived from bacterial activity. Respiration was shown to be higher than gross primary production in both whole river and bottle assays, yielding negative net production values and demonstrating that these rivers were predominately heterotrophic. Our work suggests that bacterial metabolism of DOM may be a significant contributor to the production of protein-like components within heterotrophic freshwater systems.

9.
Water Res ; 101: 1-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27240296

RESUMO

We report on the synthesis and As adsorption properties of a novel chitosan - iron (oxyhydr)oxide composite material for the remediation of arsenic-contaminated water supplies. FE-SEM, Mössbauer spectroscopy, ICP-OES and synchrotron (Bulk XAS, µXRF) techniques were applied to determine the composition of the new material and investigate the As uptake efficiency and mechanism. The iron (oxyhydr)oxide phase has been identified as a nano-sized goethite, well dispersed in the chitosan matrix, leading to the name 'chitosan goethite bionanocomposite' (CGB). The CGB material is prepared in the form of beads of high density and excellent compression strength; the embedding of the goethite nanoparticles in the chitosan matrix allows for the high adsorption capacity of nanoparticles to be realized. CGB beads remove both As(III) and As(V) efficiently from water, over the pH range 5-9, negating the need for pre-oxidation of As(III). Kinetic studies and µXRF analysis of CGB bead sections show that diffusion-adsorption of As(V) into CGB beads is faster than for As(III). Using CGB beads, synthetic high-arsenic water (0.5 mg-As/L) could be purified to world drinking standard level (<0.01 mg-As/L) using only 1.4 g/L CGB. When considered in combination with the advantages of the low-cost of raw materials required, and facile (green) synthesis route, CGB is a promising material for arsenic remediation, particularly in developing countries, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.


Assuntos
Arsênio/química , Quitosana/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química , Purificação da Água
10.
Environ Sci Process Impacts ; 18(1): 64-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26686223

RESUMO

Phosphorus is an important nutrient for plants and algae, and can be the limiting nutrient in aquatic ecosystems. However, oversupply can lead to significant water quality issues. The largest source and sink of P in most aquatic systems is the sediment. As a consequence of drought, in many places sediments that normally would have remained inundated are now being desiccated. Based on previous studies, it is often difficult to predict what impact drying will have on the cycling of P. This is because most of these studies have looked at drying across a chronosequence in the field, where there may be differences in sediment composition or microbial community structure. In this paper we present the results of a study where sediment was exposed to progressively more severe drying in the laboratory - starting with wet sediment, followed by air drying and then sequential oven drying at 30, 50 and 85 °C. Drying resulted in a shift in P speciation, notably with an increase in NaHCO3-extractable reactive P and a decline in NaHCO3-extractable unreactive P, likely indicating an increase in bioavailable, easily exchangeable P. Drying also resulted in a decline in the microbial-P fraction. Drying significantly affected the P adsorption characteristics of the sediment. The total amount of P adsorbed by the sediment and the linear adsorption co-efficient both declined, while the amount of native P adsorbed to the sediment and the equilibrium P concentration both increased. Drying also affected iron speciation with a shift from more reactive oxalate-extractable Fe to more recalcitrant citrate-dithionate-bicarbonate-extractable Fe, suggesting an increase in iron crystallinity and hence decrease in P adsorption capacity. The increase in crystallinity is consistent with Fe EXAFS results, which showed that drying resulted in an increase in edge-sharing neighbours. We hypothesise that the shifts in P speciation, the decline in P adsorption capacity, the increase in the equilibrium P concentration, as well as the death of micro-organisms (as evidenced by a decline in microbial P) on drying all contribute to the Birch effect - the initial pulse of P and/or N upon inundation of dried soils or sediments.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Fósforo/análise , Poluentes Químicos da Água/análise , Adsorção , Dessecação , Fósforo/química , Poluentes Químicos da Água/química
11.
Environ Sci Technol ; 48(18): 10835-42, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25157830

RESUMO

The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems.


Assuntos
Elétrons , Compostos Férricos/química , Ferro/química , Adsorção , Eletroquímica , Eletrodos , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Metalocenos , Oxirredução
12.
PLoS One ; 8(4): e60857, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577169

RESUMO

Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5-15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column.


Assuntos
Organismos Aquáticos/metabolismo , Eucalyptus/química , Fungos/metabolismo , Lignina/metabolismo , Microtecnologia , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Metabolismo dos Carboidratos , Fenômenos Ecológicos e Ambientais , Eucalyptus/citologia , Eucalyptus/microbiologia , Análise Multivariada , Folhas de Planta/citologia , Folhas de Planta/microbiologia
13.
Environ Sci Technol ; 47(10): 5178-84, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23586662

RESUMO

Microcystins (MCs) are a group of hepatotoxins produced by cyanobacteria that have not had their functional role or the environmental factors that trigger production clearly determined. One suggestion is that microcystins are siderophores (i.e., ligands with an extremely high affinity with iron, typically with stability constants substantially greater than 10(25)). In this work, we explore proton and iron binding with microcystin-LR (MC-LR). Using UV-visible spectroscopy and a HPLC peak retention time-based method, the two acid dissociation constants associated with the carboxylic groups of MC-LR were determined to be: pKa1 = 2.17 and pKa2 = 3.96. Cyclic voltammetry provides evidence for the formation of at least two Fe(III)-MC-LR complexes, with the Fe(III) reduction peak significantly shifted to more reducing potentials in the presence of MC-LR. These complexes have been interpreted as a rapidly formed initial complex (Complex 1) and a more stable, and slower forming, Complex 2. The stability constant for Fe(III)-MC-LR (Complex 2) was estimated to be approximately 10(13) in 60% v/v MeOH/water at 0.1 M ionic strength. The electrochemical experiments provide no evidence for the formation of a complex between Fe(2+) and MC-LR. Given that most MC-LR is released only upon cell lysis, and coupled with the moderate strength of the stability constant with Fe(III) determined in this study, it appears unlikely that that MC-LR is an extracellular siderophore. If MC-LR is involved in iron regulation in cyanobacteria, it is more likely as a shuttle for iron across the cell membrane or in intracellular processes.


Assuntos
Ácidos Carboxílicos/química , Cianobactérias/química , Ferro/química , Microcistinas/química , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Toxinas Marinhas , Prótons , Espectrofotometria Ultravioleta
14.
J Environ Manage ; 102: 71-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446134

RESUMO

The accumulation of significant pools of sulfidic sediments in inland wetlands and creeks is an emerging risk for the management of inland waterways. We used replicated plot trials to appraise the viability of various strategies for neutralizing oxidized, acidified sulfidic sediments in a highly degraded wetland. Of the twenty different treatments trialed only addition of calcium hydroxide or calcium carbonate, burning of wood, and planting of Phragmites australis, Typha domingensis and Atriplex nummularia into beds prepared with CaCO3 or P. australis and T. domingensis into beds of sediment and mulch, decreased total actual acidity (TAA) in the top 5 cm of sediment in the first two weeks following treatment. Only the calcium hydroxide treatments and planting of P. australis, T. domingensis and A. nummularia into beds prepared with CaCO3 decreased TAA for a longer period of time (6 months). None of the treatments, except the planting of P. australis into beds prepared with lime, decreased TAA in the 5-30 cm layer of sediments. Therefore, the only effective treatment appears to be the application of highly alkaline ameliorants which need to be transported to the site. A survey of the wetland was undertaken to estimate the total amount of actual and potential acidity stored in the wetland's sediment and overlying water and showed that up to 1200 tonnes of calcium carbonate would be required to neutralise all of the actual and potential acidity in the 10 ha wetland. However, neutralisation of the remaining water in the wetland (about 12.5 ML) would produce approximately 2750 m3 of metal rich sludge (approximately 100 tonnes dry weight) that would require separate disposal.


Assuntos
Conservação dos Recursos Naturais/métodos , Sedimentos Geológicos/química , Sulfetos/análise , Água/química , Áreas Alagadas , Atriplex/crescimento & desenvolvimento , Atriplex/metabolismo , Hidróxido de Cálcio/química , Carbono/química , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Typhaceae/crescimento & desenvolvimento , Typhaceae/metabolismo , Vitória , Madeira
15.
Environ Sci Technol ; 45(7): 2591-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21375259

RESUMO

The acid generation mechanisms and neutralizing capacities of sulfidic sediments from two inland wetlands have been studied in order to understand the response of these types of systems to drying events. The two systems show vastly different responses to oxidation, with one (Bottle Bend (BB) lagoon) having virtually no acid neutralizing capacity (ANC) and the other (Psyche Bend (PB) lagoon) an ANC that is an order of magnitude greater than the acid generation potential. While BB strongly acidifies during oxidation the free acid generation is less than that expected from the measured proton production and consumption processes, with additional proton consumption attributed to the formation of an acid-anion (chloride) FeIII (oxyhydr)oxide product, similar to akaganéite (Fe(OH)2.7Cl0.3). While such products can partially attenuate the acidification of these systems, resilience to acidification is primarily imparted by sediment ANC.


Assuntos
Água Doce/química , Poluentes do Solo/química , Solo/química , Sulfatos/química , Poluentes Químicos da Água/química , Áreas Alagadas , Austrália , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA