Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Physiol Genomics ; 56(6): 417-425, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640403

RESUMO

Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 µg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and ß diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, ß diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Feminino , Masculino , Camundongos , Cromossomos Sexuais/genética , Asma/imunologia , Asma/microbiologia , Asma/genética , Pyroglyphidae/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Genótipo , Gônadas/microbiologia , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/genética , Caracteres Sexuais
3.
Front Genet ; 15: 1346119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501058

RESUMO

Lung cancer remains a global public health concern with significant research focus on developing better diagnosis/prognosis biomarkers and therapeutical targets. Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that covalently closed and have ubiquitous expression. These molecules have been implicated in a variety of disease mechanisms, including lung cancer, as they exhibit oncogenic or tumor suppressor characteristics. Recent research has shown an important role that circRNAs play at different stages of lung cancer, particularly in lung adenocarcinoma. In this review, we summarize the latest research on circRNAs and their roles within lung cancer diagnosis, as well as on disease mechanisms. We also discuss the knowledge gaps on these topics and possible future research directions.

4.
Environ Toxicol Pharmacol ; 107: 104407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428705

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17ß-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.


Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Ácidos Ftálicos , Humanos , Parabenos/toxicidade , Células Endoteliais , Estradiol , Doenças Cardiovasculares/induzido quimicamente , Endotélio Vascular/fisiologia , Disruptores Endócrinos/toxicidade
5.
Physiol Genomics ; 56(2): 235-245, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047309

RESUMO

Sex differences in allergic inflammation have been reported, but the mechanisms underlying these differences remain unknown. Contributions of both sex hormones and sex-related genes to these mechanisms have been previously suggested in clinical and animal studies. Here, Four-Core Genotypes (FCG) mouse model was used to study the inflammatory response to house dust mite (HDM) challenge and identify differentially expressed genes (DEGs) and regulatory pathways in lung tissue. Briefly, adult mice (8-10 wk old) of the FCG (XXM, XXF, XYM, XYF) were challenged intranasally with 25 µg of HDM or vehicle (PBS-control group) 5 days/wk for 5 wk (n = 3/10 group). At 72 h after the last exposure, we analyzed the eosinophils and neutrophils in the bronchoalveolar lavage (BAL) of FCG mice. We extracted lung tissue and determined DEGs using Templated Oligo-Sequencing (TempO-Seq). DEG analysis was performed using the DESeq2 package and gene enrichment analysis was done using Ingenuity Pathway Analysis. A total of 2,863 DEGs were identified in the FCG. Results revealed increased eosinophilia and neutrophilia in the HDM-treated group with the most significantly expressed genes in XYF phenotype and a predominant effect of female hormones vs. chromosomes. Regardless of the sex hormones, mice with female chromosomes had more downregulated genes in the HDM group but this was reversed in the control group. Interestingly, genes associated with inflammatory responses were overrepresented in the XXM and XYF genotypes treated with HDM. Sex hormones and chromosomes contribute to inflammatory responses to HDM challenge, with female hormones exerting a predominant effect mediated by inflammatory DEGs.NEW & NOTEWORTHY Gene expression profiling helps to provide deep insight into the global view of disease-related mechanisms and responses to therapy. Using the Four-Core Genotype mouse model, our findings revealed the influence of sex hormones and sex chromosomes in the gene expression of lungs exposed to an aeroallergen (House Dust Mite) and identified sex-specific pathways to better understand sex disparities associated with allergic airway inflammation.


Assuntos
Alérgenos , Pulmão , Feminino , Camundongos , Masculino , Animais , Alérgenos/metabolismo , Pulmão/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Pyroglyphidae , Inflamação/genética , Inflamação/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Genótipo , Expressão Gênica , Hormônios/metabolismo , Líquido da Lavagem Broncoalveolar
6.
Physiol Genomics ; 56(2): 179-193, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047312

RESUMO

Epigenetic alterations such as dysregulation of miRNAs have been reported to play important roles in interactions between genetic and environmental factors. In this study, we tested the hypothesis that induction of lung inflammation by inhaled allergens triggers a sex-specific miRNA regulation that is dependent on chromosome complement and hormonal milieu. We challenged the four core genotypes (FCGs) model through intranasal sensitization with a house dust mite (HDM) solution (or PBS as a control) for 5 wk. The FCG model allows four combinations of gonads and sex chromosomes: 1) XX mice with ovaries (XXF), 2) XY mice with testes (XYM), 3) XX mice with testes (XXM), and 4) XY mice with ovaries (XYF). Following the challenge (n = 5-7/group), we assessed the expression of 84 inflammatory miRNAs in lung tissue using a PCR array and cytokine levels in bronchoalveolar lavage fluid (BAL) by a multiplex protein assay (n = 4-7 animals/group). Our results showed higher levels of the chemokine KC (an Il-8 homolog) and IL-7 in BAL from XYF mice challenged with HDM. In addition, IL-17A was significantly higher in BAL from both XXF and XYF mice. A three-way interaction among treatment, gonads, and sex chromosome revealed 60 of 64 miRNAs that differed in expression depending on genotype; XXF, XXM, XYF, and XYM mice had 45, 32, 4, and 52 differentially expressed miRNAs, respectively. Regulatory networks of miRNAs identified in this study were implicated in pathways associated with asthma. Female gonadal hormonal effects may alter miRNA expression and contribute to the higher susceptibility of females to asthma.NEW & NOTEWORTHY miRNAs play important roles in regulating gene and environmental interactions. However, their role in mediating sex differences in allergic responses and lung diseases has not been elucidated. Our study used a targeted omics approach to characterize the contributions of gonadal hormones and chromosomal components to lung responses to an allergen challenge. Our results point to the influence of sex hormones in miRNA expression and proinflammatory markers in allergic airway inflammation.


Assuntos
Asma , MicroRNAs , Feminino , Animais , Camundongos , Masculino , Citocinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/metabolismo , Cromossomos Sexuais/genética , Cromossomos Sexuais/metabolismo , Asma/genética , Asma/metabolismo , Inflamação/genética , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Hormônios Gonadais/genética , Hormônios Gonadais/metabolismo , Modelos Animais de Doenças
7.
Artigo em Inglês | MEDLINE | ID: mdl-37998310

RESUMO

BACKGROUND: Electronic cigarettes (e-cigarettes) comprise a variety of products designed to deliver nicotine, flavorings, and other substances. To date, multiple epidemiological and experimental studies have reported a variety of health issues associated with their use, including respiratory toxicity, exacerbation of respiratory conditions, and behavioral and physiological effects. While some of these effects appear to be sex- and/or gender-related, only a portion of the research has been conducted considering these variables. In this review, we sought to summarize the available literature on sex-specific effects and sex and gender differences, including predictors and risk factors, effects on organ systems, and behavioral effects. METHODS: We searched and selected articles from 2018-2023 that included sex as a variable or reported sex differences on e-cigarette-associated effects. RESULTS: We found 115 relevant studies published since 2018 that reported sex differences in a variety of outcomes. The main differences reported were related to reasons for initiation, including smoking history, types of devices and flavoring, polysubstance use, physiological responses to nicotine and toxicants in e-liquids, exacerbation of lung disease, and behavioral factors such as anxiety, depression, sexuality, and bullying. CONCLUSIONS: The available literature supports the notion that both sex and gender influence the susceptibility to the negative effects of e-cigarette use. Future research needs to consider sex and gender variables when addressing e-cigarette toxicity and other health-related consequences.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Masculino , Feminino , Vaping/efeitos adversos , Vaping/epidemiologia , Nicotina/efeitos adversos , Fatores Sexuais , Caracteres Sexuais , Aromatizantes/toxicidade
8.
J Trace Elem Med Biol ; 80: 127310, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801789

RESUMO

OBJECTIVES: High-dose oral iron supplementation for patients who develop iron deficiency after bariatric surgery may induce oxidative stress in the gastrointestine. The study's objective was to test this hypothesis by determining the impact of high-dose oral iron on systemic oxidative stress. METHODS: We used archived plasma samples from a randomized controlled clinical trial (NCT02404012) comparing FeSO4 (195 mg/day, NatureMade®, West Hills, CA) with a heme iron polypeptide (HIP, 60.4 mg/day, Proferrin®, Colorado Biolabs, Lafayette, CO) for 8 weeks. Systemic oxidative stress was measured using malondialdehyde and total antioxidant capacity (MDA, Abcam, ab238537 and TAC, Abcam, ab65329 Cambridge, UK) assays. Data was log-transformed and presented as means and standard deviations; a mixed model was used to determine the effects of time (0, 2, 4, and 8 weeks) and treatment (FeSO4 versus HIP) on oxidative stress. RESULTS: The FeSO4 (N = 8) and HIP (N = 5) participants were balanced in body mass index (35.0 ± 5.5 kg/m2), race (93 % White), time post-surgery (7.3 ± 3.3 years), as well as serum concentrations of iron (P > 0.05). The FeSO4 group tended to be older (44.3 ± 4.5 years) and they had lower concentrations of serum ferritin (6.5 ± 2.7 µg/mL) than the HIP (38.2 ± 9.3 years, and 12.9 ± 16.8 µg/mL) group (P = 0.080, and P = 0.017 respectively). We observed a larger increase in serum iron in the FeSO4 group during the 8 weeks of Fe supplementation, compared to that in the HIP group (p = 0.004). We observed a decreasing trend in MDA over the 8 weeks (p = 0.080) in the FeSO4 treatment group. There were no significant differences in TAC between and within FeSO4 and HIP groups over the 8 week supplementation period. CONCLUSIONS: This preliminary study suggests that high-dose oral iron supplementation for iron deficiency does not adversely impact systemic oxidative stress in patients undergoing bariatric surgery.


Assuntos
Cirurgia Bariátrica , Deficiências de Ferro , Humanos , Ferro , Estresse Oxidativo , Suplementos Nutricionais
9.
Adv Biol (Weinh) ; 7(11): e2300045, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37204107

RESUMO

Circadian rhythms have an established role in regulating physiological processes, such as inflammation, immunity, and metabolism. Ozone, a common environmental pollutant with strong oxidative potential, is implicated in lung inflammation/injury in asthmatics. However, whether O3 exposure affects the expression of circadian clock genes in the lungs is not known. In this study, changes in the expression of core clock genes are analyzed in the lungs of adult female and male mice exposed to filtered air (FA) or O3 using qRT-PCR. The findings are confirmed using an existing RNA-sequencing dataset from repeated FA- and O3 -exposed mouse lungs and validated by qRT-PCR. Acute O3 exposure significantly alters the expression of clock genes in the lungs of females (Per1, Cry1, and Rora) and males (Per1). RNA-seq data revealing sex-based differences in clock gene expression in the airway of males (decreased Nr1d1/Rev-erbα) and females (increased Skp1), parenchyma of females and males (decreased Nr1d1 and Fbxl3 and increased Bhlhe40 and Skp1), and alveolar macrophages of males (decreased Arntl/Bmal1, Per1, Per2, Prkab1, and Prkab2) and females (increased Cry2, Per1, Per2, Csnk1d, Csnk1e, Prkab2, and Fbxl3). These findings suggest that lung inflammation caused by O3 exposure affects clock genes which may regulate key signaling pathways.


Assuntos
Relógios Circadianos , Pneumonia , Camundongos , Animais , Masculino , Feminino , Relógios Circadianos/genética , Ritmo Circadiano/genética , Reação em Cadeia da Polimerase , Inflamação/genética , Expressão Gênica
10.
Pulm Circ ; 13(2): e12232, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123538

RESUMO

Pulmonary hypertension associated with bronchopulmonary dysplasia is a severe complication of preterm birth resulting in high mortality of up to 50% within the first 2 years of life. There is a direct relationship between bronchopulmonary dysplasia severity and incidence of associated pulmonary hypertension. However, it is challenging to clinically characterize severe bronchopulmonary dysplasia with and without pulmonary hypertension and there is need for better understanding of the two entities. Our main objective is to identify markers to help understand biological processes and characterize infants with pulmonary hypertension associated with bronchopulmonary dysplasia using tracheal aspirates. We conducted an unbiased multiomic analysis of tracheal aspirates via microRNA (miRNA) polymerase chain reaction arrays, RNA sequencing, and mass spectrometry proteomics in preterm infants with severe bronchopulmonary dysplasia with and without pulmonary hypertension (n = 46). Our pilot study analysis revealed 12 miRNAs (hsa-miR-29a, has-miR-542-3p, has-miR-624, has-miR-183, hsa-miR-501-3p, hsa-miR-101, hsa-miR-3131, hsa-miR-3683, hsa-miR-3193, hsa-miR-3672, hsa-miR-3128, and hsa-miR-1287), 6 transcripts (IL6, RPL35P5, HSD3B7, RNA5SP215, OR2A1-AS1, and RNVU1-19), and 5 proteins (CAPS, AAT, KRT5, SFTPB, and LGALS3BP) with significant differential expression in preterm infants with severe lung disease with pulmonary hypertension when compared with infants with severe lung disease but no pulmonary hypertension. Pathway analysis of the integrated multiomic expression signatures revealed NFkB, VEGF, SERPINA1, IL6, and ERK1/2 as target molecules and cellular development, cellular growth and proliferation, and cellular movement as key affected molecular functions. Our multiomic analysis of tracheal aspirates revealed a comprehensive thumbprint of miRNAs, mRNAs, and proteins that could help endotype infants with severe lung disease and pulmonary hypertension.

11.
J Adolesc Health ; 72(4): 502-509, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610880

RESUMO

PURPOSE: Age of first exposure to tackle football and head impact kinematics have been used to examine the effect of head impacts on mental health outcomes. These measures coupled with retrospective and cross-sectional designs have contributed to conflicting results. The purpose of this study was to identify the effect of one season of head impact exposure, age of first exposure to football, and psychological need satisfaction on acute mental health outcomes in adolescent football players. METHODS: This prospective single-season cohort study used sensor-installed mouthguards to collect head impact exposure along with surveys to assess age of first exposure to football, psychological satisfaction, depressive symptoms, anxiety symptoms, and thriving from football players at four high schools (n = 91). Linear regression was used to test the association of head impact exposure, age of first exposure, and psychological satisfaction with acute mental health outcomes. RESULTS: A total of 9,428 impacts were recorded with a mean of 102 ± 113 impacts/player. Cumulative head impact exposure and age of first exposure were not associated with acute mental health outcomes at postseason or change scores from preseason to postseason. Greater psychological satisfaction was associated with fewer depressive symptoms (ß = -0.035, SE = 0.008, p = < .001), fewer anxiety symptoms (ß = -0.021, SE = 0.008, p = .010), and greater thriving scores (ß = 0.278, SE = 0.040, p = < .001) at postseason. DISCUSSION: This study does not support the premise that greater single-season head impact exposure or earlier age of first exposure to tackle football is associated with worse acute mental health indicators over the course of a single season in adolescent football players.


Assuntos
Concussão Encefálica , Futebol Americano , Saúde Mental , Humanos , Adolescente , Instituições Acadêmicas , Estudos Prospectivos , Estudos Retrospectivos , Estudos Transversais , Traumatismos em Atletas
12.
J Environ Expo Assess ; 2(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38741701

RESUMO

Thirdhand smoke (THS) is the accumulation of secondhand smoke on surfaces that ages with time. THS exposure is a potential health threat to children, partners of smokers, and workers in environments with current or past smoking, and needs further investigation. In this study, we hypothesized that thirdhand Electronic Nicotine Delivery Systems (ENDS) exposures elicit lung and systemic inflammation due to resuspended particulate matter (PM) and inorganic compounds that remain after active vaping has ceased. To test our hypothesis, we exposed C57BL/6J mice to cotton towels contaminated with ENDS aerosols from unflavored vape fluid (6 mg nicotine in 50/50 propylene glycol/vegetable glycerin) for 1h/day, five days/week, for three weeks. We assessed protein levels in serum and bronchoalveolar lavage fluid (BALF) using a multiplex protein assay. The mean ± sd for PM10 and PM2.5 measurements in exposed mouse cages were 8.3 ± 14.0 and 4.6 ± 7.5 µg/m3, compared to 6.1 ± 11.2 and 3.7 ± 6.6 µg/m3 in control cages respectively. Two compounds, 4-methyl-1, 2-dioxolane and 4-methyl-cyclohexanol, were detected in vape fluid and on ENDS-contaminated towels, but not on control towels. Mice exposed to ENDS-contaminated towels had lower levels of serum Il-7 (P = 0.022, n = 7), and higher levels of Il-13 in the BALF (P = 0.006, n = 7) than those exposed to control towels (n = 6). After adjusting for sex and age, Il-7 and Il-13 levels were still associated with thirdhand vaping exposure (P = 0.010 and P = 0.017, respectively). This study provides further evidence that thirdhand ENDS aerosols can contaminate surfaces, and subsequently influence lung and systemic health upon exposure.

13.
Ann Transl Med ; 10(22): 1189, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36544664
14.
PLoS One ; 17(8): e0272769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947545

RESUMO

INTRODUCTION: Despite recent advances in perinatal medicine, bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth. Inflammation, the main cause for BPD, results in arrested alveolarization. All trans-retinoic acid (ATRA), the active metabolite of Vitamin A, facilitates recovery from hyperoxia induced cell damage. The mechanisms involved in this response, and the genes activated, however, are poorly understood. In this study, we investigated the mechanisms of action of ATRA in human lung epithelial cells exposed to hyperoxia. We hypothesized that ATRA reduces hyperoxia-induced inflammatory responses in A549 alveolar epithelial cells. METHODS: A549 cells were exposed to hyperoxia with or without treatment with ATRA, followed by RNA-seq analysis. RESULTS: Transcriptomic analysis of A549 cells revealed ~2,000 differentially expressed genes with a higher than 2-fold change. Treatment of cells with ATRA alleviated some of the hyperoxia-induced changes, including Wnt signaling, cell adhesion and cytochrome P450 genes, partially through NF-κB signaling. DISCUSSION/CONCLUSION: Our findings support the idea that ATRA supplementation may decrease hyperoxia-induced disruption of the neonatal respiratory epithelium and alleviate development of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Nascimento Prematuro , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/etiologia , Feminino , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , NF-kappa B/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt
15.
Front Allergy ; 3: 875295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769576

RESUMO

Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.

16.
Life (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454997

RESUMO

Background: MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression playing a key role in organogenesis. MiRNAs are studied in tracheal aspirates (TA) of preterm infants. However; this is difficult to obtain in infants who are not intubated. This study examines early salivary miRNA expression as non-invasive early biomarkers in extremely low gestational age newborns (ELGANs). Methods: Saliva was collected using DNA-genotek swabs, miRNAs were analyzed using RNA seq and RT PCR arrays. Salivary miRNA expression was compared to TA using RNA seq at 3 days of age, and longitudinal changes at 28 days of age were analyzed using RT PCR arrays in ELGANs. Results: Approximately 822 ng of RNA was extracted from saliva of 7 ELGANs; Of the 757 miRNAs isolated, 161 miRNAs had significant correlation in saliva and TA at 3 days of age (r = 0.97). Longitudinal miRNA analysis showed 29 miRNAs downregulated and 394 miRNAs upregulated at 28 days compared to 3 days of age (adjusted p < 0.1). Bioinformatic analysis (Ingenuity Pathway Analysis) of differentially expressed miRNAs identified organismal injury and abnormalities and cellular development as the top physiological system development and cellular function. Conclusion: Salivary miRNA expression are source for early biomarkers of underlying pathophysiology in ELGANs.

17.
Exp Biol Med (Maywood) ; 246(19): 2098-2110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080912

RESUMO

Lung cancer represents the world's leading cause of cancer deaths. Sex differences in the incidence and mortality rates for various types of lung cancers have been identified, but the biological and endocrine mechanisms implicated in these disparities have not yet been determined. While some cancers such as lung adenocarcinoma are more commonly found among women than men, others like squamous cell carcinoma display the opposite pattern or show no sex differences. Associations of tobacco product use rates, susceptibility to carcinogens, occupational exposures, and indoor and outdoor air pollution have also been linked to differential rates of lung cancer occurrence and mortality between sexes. While roles for sex hormones in other types of cancers affecting women or men have been identified and described, little is known about the influence of sex hormones in lung cancer. One potential mechanism identified to date is the synergism between estrogen and some tobacco compounds, and oncogene mutations, in inducing the expression of metabolic enzymes, leading to enhanced formation of reactive oxygen species and DNA adducts, and subsequent lung carcinogenesis. In this review, we present the literature available regarding sex differences in cancer rates, associations of male and female sex hormones with lung cancer, the influence of exogenous hormone therapy in women, and potential mechanisms mediated by male and female sex hormone receptors in lung carcinogenesis. The influence of biological sex on lung disease has recently been established, thus new research incorporating this variable will shed light on the mechanisms behind the observed disparities in lung cancer rates, and potentially lead to the development of new therapeutics to treat this devastating disease.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Carcinógenos/metabolismo , Humanos , Fatores de Risco , Fatores Sexuais
18.
Adv Exp Med Biol ; 1304: 227-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019273

RESUMO

Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Adulto , Criança , Feminino , Humanos , Recém-Nascido , Pulmão , Masculino , SARS-CoV-2 , Caracteres Sexuais
19.
Biomedicines ; 9(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807742

RESUMO

Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease that develops in neonates as a consequence of preterm birth, arrested fetal lung development, and inflammation. The incidence of BPD remains on the rise as a result of increasing survival of extremely preterm infants. Severe BPD contributes to significant health care costs and is associated with prolonged hospitalizations, respiratory infections, and neurodevelopmental deficits. In this study, we aimed to detect novel biomarkers of BPD severity. We collected tracheal aspirates (TAs) from preterm babies with mild/moderate (n = 8) and severe (n = 17) BPD, and we profiled the expression of 1048 miRNAs using a PCR array. Associations with biological pathways were determined with the Ingenuity Pathway Analysis (IPA) software. We found 31 miRNAs differentially expressed between the two disease groups (2-fold change, false discovery rate (FDR) < 0.05). Of these, 4 miRNAs displayed significantly higher expression levels, and 27 miRNAs had significantly lower expression levels in the severe BPD group when compared to the mild/moderate BPD group. IPA identified cell signaling and inflammation pathways associated with miRNA signatures. We conclude that TAs of extremely premature infants contain miRNA signatures associated with severe BPD. These may serve as potential biomarkers of disease severity in infants with BPD.

20.
Exp Biol Med (Maywood) ; 246(12): 1400-1409, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794694

RESUMO

Asthma is a chronic inflammatory lung disease affecting approximately 7.7% of the US population. Sex differences in the prevalence, incidence, and severity of asthma have been widely described throughout the lifespan, showing higher rates in boys than girls before puberty, but a reversed pattern in adults. Asthma is often associated with atopy, i.e. the tendency to develop allergic diseases, and can be worsened by environmental stimuli and/or exercise. While not exclusive to patients with asthma, exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. Currently, there is limited research on sex differences in EIB and its relationship with atopy and asthma in men and women. In this minireview, we summarize the available literature on this topic. Overall, the collective knowledge supports the notion that physiological changes triggered during exercise affect males and females differently, suggesting an interaction among sex, exercise, sex hormones, and atopic status in the course of EIB pathophysiology. Understanding these differences is important to provide personalized management plans to men and women who exercise regularly and suffer from underlying asthma and/or atopy.


Assuntos
Asma/fisiopatologia , Broncoconstrição/fisiologia , Exercício Físico/fisiologia , Animais , Atletas , Humanos , Prevalência , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA