Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
JCI Insight ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687615

RESUMO

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole sporozoite PfSPZ Vaccine in African infants. Innate immune activation and myeloid signatures at pre-vaccination baseline correlated with protection from Pf parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ Vaccine dose. Machine learning identified spliceosome, proteosome, and resting dendritic cell signatures as pre-vaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline CSP-specific IgG predicted non-protection. Pre-vaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T-cell responses post-vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naïve mice while diminishing the CD8+ T-cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity of whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggest that PfSPZ Vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.

2.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531102

RESUMO

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Militares , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Vacinas Antimaláricas/administração & dosagem , Indonésia/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esporozoítos/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Plasmodium falciparum/imunologia , Malária Vivax/prevenção & controle , Malária Vivax/epidemiologia , Masculino , Adulto , Adulto Jovem , Plasmodium vivax/imunologia , Feminino
3.
EMBO Mol Med ; 16(4): 723-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514791

RESUMO

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Camundongos , Plasmodium falciparum/genética , Malária Falciparum/prevenção & controle , Deleção de Genes , Vacinas Antimaláricas/genética , Vacinas Atenuadas/genética , Esporozoítos/genética
4.
Sci Rep ; 14(1): 2881, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311678

RESUMO

Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8+ T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.


Assuntos
Vacinas Antimaláricas , Malária , Camundongos , Animais , Esporozoítos , Linfócitos T CD8-Positivos , Glicolipídeos , Malária/parasitologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Camundongos Endogâmicos BALB C
5.
J Clin Invest ; 134(6)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194272

RESUMO

BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/µL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.


Assuntos
Infecções por HIV , Vacinas Antimaláricas , Malária Falciparum , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antiprotozoários , População da África Oriental , Infecções por HIV/complicações , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Tanzânia , Soronegatividade para HIV , Soropositividade para HIV , Eficácia de Vacinas
6.
Res Sq ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609210

RESUMO

Malaria is caused by Plasmodium parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8+ T cells. Such T cells can be induced by 'prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.

7.
Vaccine ; 41(38): 5494-5498, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37563050

RESUMO

Development of next-generation vaccines against Plasmodium falciparum (Pf) is a priority. Many malaria vaccines target the pre-erythrocytic sporozoite (SPZ) and liver stages. These include subunit vaccines based on the Pf circumsporozoite protein (CSP) and attenuated PfSPZ vaccines. However, these strategies require 3-4 doses and have not achieved optimal efficacy against field-transmitted malaria. Prime-and-trap is a recently developed two-step heterologous vaccine strategy that combines priming with DNA encoding CSP followed by a single dose of attenuated SPZ. This strategy aims to induce CD8+ T cells that can eliminate parasites in the liver. Prior data has demonstrated that prime-and-trap with P. yoelii CSP and PySPZ was immunogenic and protective in mice. Here we report preliminary data on the immunogenicity of PfCSP prime and PfSPZ trap vaccine in rhesus macaques. This vaccine induced PfCSP-specific antibodies and T cell responses in all animals. However, response magnitude differed between individuals, suggesting further study is required.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Camundongos , Linfócitos T CD8-Positivos , Macaca mulatta , Plasmodium falciparum , Proteínas de Protozoários/genética , Vacinas Atenuadas , Anticorpos Antiprotozoários
8.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37571809

RESUMO

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Gravidez , Criança , Animais , Humanos , Feminino , Esporozoítos , Ciência Translacional Biomédica , Vacinas Atenuadas , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Imunização
9.
PLoS Pathog ; 19(6): e1011468, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384799

RESUMO

Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.


Assuntos
Culicidae , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Culicidae/genética , Expressão Gênica , Malária Falciparum/genética , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Esporozoítos , Virulência/genética
10.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37160281

RESUMO

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Adulto , Humanos , Criança , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Plasmodium falciparum , Malária Falciparum/prevenção & controle , Esporozoítos , Vacinas Atenuadas , Guiné Equatorial , Método Duplo-Cego , Imunogenicidade da Vacina
11.
Sci Transl Med ; 14(674): eabj3776, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475905

RESUMO

A highly effective malaria vaccine remains elusive despite decades of research. Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), a metabolically active, nonreplicating, whole parasite vaccine demonstrated safety and vaccine efficacy (VE) against endemic P. falciparum for 6 months in Malian adults receiving a five-dose regimen. Safety, immunogenicity, and VE of a three-dose regimen were assessed in adults in Balonghin, Burkina Faso in a two-component study: an open-label dose escalation trial with 32 participants followed by a double-blind, randomized, placebo-controlled trial (RCT) with 80 participants randomized to receive three doses of 2.7 × 106 PfSPZ (N = 39) or normal saline (N = 41) just before malaria season. To clear parasitemia, artesunate monotherapy was administered before first and last vaccinations. Thick blood smear microscopy was performed on samples collected during illness and every 4 weeks for 72 weeks after last vaccinations, including two 6-month malaria transmission seasons. Safety outcomes were assessed in all 80 participants who received at least one dose and VE for 79 participants who received three vaccinations. Myalgia was the only symptom that differed between groups. VE (1 - risk ratio; primary VE endpoint) was 38% at 6 months (P = 0.017) and 15% at 18 months (0.078). VE (1 - hazard ratio) was 48% and 46% at 6 and 18 months (P = 0.061 and 0.018). Two weeks after the last dose, antibodies to P. falciparum circumsporozoite protein and PfSPZ were higher in protected versus unprotected vaccinees. A three-dose regimen of PfSPZ Vaccine demonstrated safety and efficacy against malaria infection in malaria-experienced adults.


Assuntos
Esporozoítos , Vacinas , Humanos , Animais
12.
Nature ; 612(7940): 534-539, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477528

RESUMO

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Assuntos
Plasmodium falciparum , Esporozoítos , Animais , Humanos , Camundongos , Culicidae/parasitologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/biossíntese , Vacinas Antimaláricas/química , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/patogenicidade , Hepatócitos/parasitologia , Fígado/parasitologia , Proteína 1 de Superfície de Merozoito , Eritrócitos/parasitologia , Técnicas In Vitro
13.
Front Immunol ; 13: 1006716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389797

RESUMO

Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Lactente , Animais , Feminino , Humanos , Masculino , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Malária/tratamento farmacológico
14.
NPJ Vaccines ; 7(1): 100, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999221

RESUMO

Immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ) in PfSPZ Vaccine, has provided better vaccine efficacy (VE) against controlled human malaria infection (CHMI) with the same parasites as in the vaccine (homologous) than with genetically distant parasites (heterologous). We sought to identify an immunization regimen that provided similar VE against CHMI with homologous and heterologous Pf for at least 9 weeks in malaria-naïve adults. Such a regimen was identified in part 1 (optimization), an open label study, and confirmed in part 2 (verification), a randomized, double-blind, placebo-controlled study in which VE was assessed by cross-over repeat CHMI with homologous (PfNF54) and heterologous (Pf7G8) PfSPZ at 3 and 9-10 weeks. VE was calculated using Bayesian generalized linear regression. In part 1, vaccination with 9 × 105 PfSPZ on days 1, 8, and 29 protected 5/5 (100%) subjects against homologous CHMI at 3 weeks after the last immunization. In part 2, the same 3-dose regimen protected 5/6 subjects (83%) against heterologous CHMI at both 3 and 9-10 weeks after the last immunization. Overall VE was 78% (95% predictive interval: 57-92%), and against heterologous and homologous was 79% (95% PI: 54-95%) and 77% (95% PI: 50-95%) respectively. PfSPZ Vaccine was safe and well tolerated. A 4-week, 3-dose regimen of PfSPZ Vaccine provided similar VE for 9-10 weeks against homologous and heterologous CHMI. The trial is registered with ClinicalTrials.gov, NCT02704533.

15.
EClinicalMedicine ; 52: 101579, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35928033

RESUMO

Background: Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. Methods: Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. Findings: 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. Interpretation: PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. Funding: U.S. National Institutes of Health, Sanaria. Registration number: ClinicalTrials.gov identifier (NCT number): NCT02996695.

16.
Nat Commun ; 13(1): 3390, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697668

RESUMO

Controlled human malaria infection (CHMI) has supported Plasmodium falciparum (Pf) malaria vaccine development by providing preliminary estimates of vaccine efficacy (VE). Because CHMIs generally use Pf strains similar to vaccine strains, VE against antigenically heterogeneous Pf in the field has been required to establish VE. We increased the stringency of CHMI by selecting a Brazilian isolate, Pf7G8, which is genetically distant from the West African parasite (PfNF54) in our PfSPZ vaccines. Using two regimens to identically immunize US and Malian adults, VE over 24 weeks in the field was as good as or better than VE against CHMI at 24 weeks in the US. To explain this finding, here we quantify differences in the genome, proteome, and predicted CD8 T cell epitopes of PfNF54 relative to 704 Pf isolates from Africa and Pf7G8. We show that Pf7G8 is more distant from PfNF54 than any African isolates tested. We propose VE against Pf7G8 CHMI for providing pivotal data for malaria vaccine licensure for travelers to Africa, and potentially for endemic populations, because the genetic distance of Pf7G8 from the Pf vaccine strain makes it a stringent surrogate for Pf parasites in Africa.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , África/epidemiologia , Animais , Epitopos de Linfócito T/genética , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Esporozoítos
17.
Sci Immunol ; 7(72): eabm9644, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687696

RESUMO

T follicular helper (TFH) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific TFH cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating TFH (cTFH) cells during successive malaria immunizations with radiation-attenuated Plasmodium falciparum (Pf) sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cTFH response with high frequency of cells specific to a small number of epitopes in Pf circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the TFH cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced TFH cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.


Assuntos
Vacinas Antimaláricas , Plasmodium falciparum , Receptores de Antígenos de Linfócitos T/imunologia , Células T Auxiliares Foliculares , Sequência de Aminoácidos , Evolução Clonal , Epitopos , Humanos
18.
Front Immunol ; 13: 851028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242146

RESUMO

Ionizing radiation (UV, X-ray and É£) administered at an appropriate dose to pathogenic organisms can prevent replication while preserving metabolic activity. We have established the GMP process for attenuation by ionizing radiation of the Plasmodium falciparum (Pf) sporozoites (SPZ) in Sanaria® PfSPZ Vaccine, a protective vaccine against malaria. Mosquitoes raised and infected aseptically with Pf were transferred into infected mosquito transport containers (IMTC) and É£-irradiated using a 60Co source. PfSPZ were then extracted, purified, vialed, and cryopreserved. To establish the appropriate radiation conditions, the irradiation field inside the IMTCs was mapped using radiochromic film and alanine transfer dosimeters. Dosimeters were irradiated for times calculated to provide 120-170 Gy at the minimum dose location inside the IMTC and regression analysis was used to determine the time required to achieve a lower 95% confidence interval for 150 Gy. A formula incorporating the half-life of 60Co was then used to construct tables of irradiation times for each calendar day. From the mapping studies, formulae were derived to estimate the minimum and maximum doses of irradiation received inside the IMTC from a reference dosimeter mounted on the outside wall. For PfSPZ Vaccine manufacture a dose of 150 Gy was targeted for each irradiation event, a dose known to completely attenuate PfSPZ. The reference dosimeters were processed by the National Institute of Standards and Technology. There have been 587 irradiation events to produce PfSPZ Vaccine during 13 years which generated multiple lots released for pre-clinical studies and clinical trials. The estimated doses at the minimum dose location (mean 154.3 ± 1.77 Gy; range 150.0-159.3 Gy), and maximum dose location (mean 166.3 ± 3.65 Gy, range 155.7 to 175.3 Gy), in IMTCs were normally distributed. Overall dose uniformity was 1.078 ± 0.012. There was no siginifcant change in measured dose over 13 years. As of January 2022, 21 clinical trials of PfSPZ Vaccine have been conducted, with 1,740 volunteers aged 5 months to 61 years receiving 5,648 doses of PfSPZ Vaccine totalling >5.3 billion PfSPZ administered. There have been no breakthrough infections, confirming the consistency and robustness of the radiation attenuation process.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Vacinologia
19.
Am J Trop Med Hyg ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226868

RESUMO

Repeated intravenous (IV) administration of radiation-attenuated sporozoite (RAS) vaccines induces Plasmodium-specific CD8+ liver-resident T (Trm) cells in mice and achieves sterile protection against challenge. Our heterologous "prime-and-trap" vaccine strategy was previously shown to simplify and improve upon RAS vaccination. Prime-and-trap vaccination combines epidermal priming by DNA-encoded circumsporozoite protein (CSP) antigen followed by a single IV dose of freshly dissected RAS (fresh-RAS) to direct and trap activated and expanding CD8+ T cells in the liver. Prime-and-trap vaccination protects mice against wild-type sporozoite (spz) challenge. Assessment of prime-and-trap vaccines in nonhuman primate (NHP) models and/or humans would be greatly enabled if fresh-RAS could be replaced by cryopreserved RAS (cryo-RAS). Here, we investigated if fresh-RAS could be replaced with cryo cryo-RAS for prime-and-trap vaccination in BALB/cj mice. Despite a reduction in spz vaccine liver burden following cryo-RAS administration compared with fresh-RAS, cryo-RAS induced a similar level of Plasmodium yoelii (Py) CSP-specific CD8+ liver Trm cells and completely protected mice against Pyspz challenge 112 days after vaccination. Additionally, when the glycolipid adjuvant 7DW8-5 was coadministered with cryo-RAS, 7DW8-5 permitted the dose of cryo-RAS to be reduced 4-fold while still achieving high rates of sterile protection. In summary, cryo-RAS with and without 7DW8-5 were compatible with prime-and-trap malaria vaccination in a mouse model, which may accelerate the pathway for this vaccine strategy to move to NHPs and humans.

20.
BMC Infect Dis ; 22(1): 86, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073864

RESUMO

BACKGROUND: Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure. METHODS: We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity. RESULTS: Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability. CONCLUSIONS: The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria. Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Animais , Formação de Anticorpos , Criança , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Esquizontes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA