Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 309: 122579, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38670033

RESUMO

Owing to air pollution and the pandemic outbreak, the need for quantitative pulmonary monitoring has greatly increased. The COVID-19 outbreak has aroused attention for comfortable wireless monitoring of respiratory profiles and more real-time diagnosis of respiratory diseases. Although respiration sensors have been investigated extensively with single-pixel sensors, 2D respiration profiling with a pixelated array sensor has not been demonstrated for both exhaling and inhaling. Since the pixelated array sensor allowed for simultaneous profiling of the nasal breathing and oral breathing, it provides essential respiratory information such as breathing patterns, respiration habit, breathing disorders. In this study, we introduced an air-permeable, stretchable, and a pixelated pressure sensor that can be integrated into a commercial face mask. The mask sensor showed a strain-independent pressure-sensing performance, providing 2D pressure profiles for exhalation and inhalation. Real-time 2D respiration profiles could monitor various respiratory behaviors, such as oral/nasal breathing, clogged nose, out-of-breath, and coughing. Furthermore, they could detect respiratory diseases, such as rhinitis, sleep apnea, and pneumonia. The 2D respiratory profiling mask sensor is expected to be employed for remote respiration monitoring and timely patient treatment.


Assuntos
COVID-19 , Máscaras , Respiração , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Desenho de Equipamento
2.
Adv Mater ; 34(18): e2110536, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194844

RESUMO

Smart contact lenses for continuous glucose monitoring (CGM) have great potential for huge clinical impact. To date, their development has been limited by challenges in accurate detection of glucose without hysteresis for tear glucose monitoring to track the blood glucose levels. Here, long-term robust CGM in diabetic rabbits is demonstrated by using bimetallic nanocatalysts immobilized in nanoporous hydrogels in smart contact lenses. After redox reaction of glucose oxidase, the nanocatalysts facilitate rapid decomposition of hydrogen peroxide and nanoparticle-mediated charge transfer with drastically improved diffusion via rapid swelling of nanoporous hydrogels. The ocular glucose sensors result in high sensitivity, fast response time, low detection limit, low hysteresis, and rapid sensor warming-up time. In diabetic rabbits, smart contact lens can detect tear glucose levels consistent with blood glucose levels measured by a glucometer and a CGM device, reflecting rapid concentration changes without hysteresis. The CGM in a human demonstrates the feasibility of smart contact lenses for further clinical applications.


Assuntos
Lentes de Contato , Diabetes Mellitus , Nanoporos , Animais , Glicemia , Automonitorização da Glicemia , Glucose , Hidrogéis , Coelhos
3.
Adv Sci (Weinh) ; 9(9): e2103254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092362

RESUMO

Diabetic retinopathy is currently treated by highly invasive repeated therapeutic injections and surgical interventions without complete vision recovery. Here, a noninvasive smart wireless far red/near-infrared (NIR) light emitting contact lens developed successfully for the repeated treatment of diabetic retinopathy with significantly improved compliance. A far red/NIR light emitting diode (LED) is connected with an application-specific integrated circuit chip, wireless power, and communication systems on a PET film, which is embedded in a silicone elastomer contact lens by thermal crosslinking. After in vitro characterization, it is confirmed that the retinal vascular hyper-permeability induced by diabetic retinopathy in rabbits is reduced to a statistically significant level by simply repeated wearing of smart far red/NIR LED contact lens for 8 weeks with 120 µW light irradiation for 15 min thrice a week. Histological analysis exhibits the safety and feasibility of LED contact lenses for treating diabetic retinopathy. This platform technology for smart LED contact lens would be harnessed for various biomedical photonic applications.


Assuntos
Lentes de Contato , Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/terapia , Raios Infravermelhos , Coelhos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37015407

RESUMO

This paper presents an 8-channel electrocardiogram (ECG) monitoring integrated circuit (IC) controlled by time-division multiplexing (TDM). The proposed TDM compensates the electrode DC offsets by forming an individual discrete-time feedback loop per channel while sharing an analog frontend. This enables a chopping-free open-loop amplification, achieving a high input impedance suitable for a noncontact ECG monitoring. In addition, a common-mode interference (CMI) cancellation scheme is also introduced in the proposed TDM schedule for the realization of a pseudo-driven-right leg (DRL) in a multichannel environment. The designed system is implemented in 180 nm CMOS. The chip dissipates 18.6 µW/channel including the power consumption by ADC. It shows the total-CMRR of 100 dB against CMI voltage swing up to 20 VPP. The chip is verified in noncontact 8-channel ECG using conventional passive electrodes.

5.
Sci Adv ; 6(17): eaba3252, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32426469

RESUMO

A smart contact lens can be used as an excellent interface between the human body and an electronic device for wearable healthcare applications. Despite wide investigations of smart contact lenses for diagnostic applications, there has been no report on electrically controlled drug delivery in combination with real-time biometric analysis. Here, we developed smart contact lenses for both continuous glucose monitoring and treatment of diabetic retinopathy. The smart contact lens device, built on a biocompatible polymer, contains ultrathin, flexible electrical circuits and a microcontroller chip for real-time electrochemical biosensing, on-demand controlled drug delivery, wireless power management, and data communication. In diabetic rabbit models, we could measure tear glucose levels to be validated by the conventional invasive blood glucose tests and trigger drugs to be released from reservoirs for treating diabetic retinopathy. Together, we successfully demonstrated the feasibility of smart contact lenses for noninvasive and continuous diabetic diagnosis and diabetic retinopathy therapy.

6.
Sci Rep ; 10(1): 1126, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980717

RESUMO

The rise in environmental issues has stimulated research on alternative energy. In this regard, triboelectric generation has received much attention as one of several new alternative energy sources. Among the triboelectric generation methods, solid-liquid triboelectric nanogenerators (SLTENGs) have been actively investigated owing to their durability and broad applicability. In this paper, we report on the optimum arrangement of SLTENGs to increase the generation of electrical energy. When hydrophobic SLTENGs are arranged in parallel with a specific intervening gap, the friction area between the water and the surface of the SLTENGs is changed owing to the different penetration distances of water between them. This difference affects the amount of triboelectricity generated; this change in the water contact area is caused by the capillary phenomenon. Therefore, we investigated the effect of the gap on water penetration and formulated an optimum arrangement to achieve optimum electricity generation efficiency when multiple SLTENGs are contained in a limited volume. The proposed optimum arrangement of SLTENGs is expected to have high utilization in energy harvesting from natural environment sources such as wave energy or water flow.

7.
ACS Appl Mater Interfaces ; 11(40): 37347-37356, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502433

RESUMO

Noninvasive real-time biosensors to measure glucose levels in the body fluids have been widely investigated for continuous glucose monitoring of diabetic patients. However, they suffered from low sensitivity and reproducibility due to the instability of nanomaterials used for glucose biosensors. Here, we developed a hyaluronate-gold nanoparticle/glucose oxidase (HA-AuNP/GOx) complex and an ultralow-power application-specific integrated circuit chip for noninvasive and robust wireless patch-type glucose sensors. The HA-AuNP/GOx complex was prepared by the facile conjugation of thiolated HA to AuNPs and the following physical binding of GOx. The wireless glucose sensor exhibited slow water evaporation (0.11 µL/min), fast response (5 s), high sensitivity (12.37 µA·dL/mg·cm2) and selectivity, a low detection limit (0.5 mg/dL), and highly stable enzymatic activity (∼14 days). We successfully demonstrated the strong correlation between glucose concentrations measured by a commercially available blood glucometer and the wireless patch-type glucose sensor. Taken together, we could confirm the feasibility of the wireless patch-type robust glucose sensor for noninvasive and continuous diabetic diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Glucose Oxidase/metabolismo , Glucose/análise , Ouro/química , Ácido Hialurônico/química , Nanopartículas Metálicas/química , Tecnologia sem Fio , Animais , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus
8.
IEEE Trans Biomed Circuits Syst ; 13(5): 986-998, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31329128

RESUMO

Internet-of-things applications that use machine-learning algorithms have increased the demand for application-specific energy-efficient hardware that can perform both learning and inference tasks to adapt to endpoint users or environmental changes. This paper presents a multilayer-learning neuromorphic system with analog-based multiplier-accumulator (MAC), which can learn training data by stochastic gradient descent algorithm. As a component of the proposed system, a current-mode MAC processor, fabricated in 28-nm CMOS technology, performs both forward and backward processing in a crossbar structure of 500 × 500 6-b transposable SRAM arrays. The proposed system is verified in a two-layer neural network by using two prototype chips and an FPGA. Without any calibration circuit for the analog-based MAC, the proposed system compensates for non-idealities from analog operations by learning training data with the analog-based MAC. With 1-b (+1, 0, -1) batch update of 6-b synaptic weights, the proposed system achieves a recognition rate of 96.6% with a peak energy efficiency of 2.99 TOPS/W (1 OP = one unsigned 8-b × signed 6-b MAC operation) in the classification of the MNIST dataset.


Assuntos
Bases de Dados Factuais , Aprendizado Profundo
9.
Nanomaterials (Basel) ; 9(1)2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30621319

RESUMO

Given the operation conditions wherein mechanical wear is inevitable, modifying bulk properties of the dielectric layer of a triboelectric nanogenerator (TENG) has been highlighted to boost its energy output. However, several concerns still remain in regards to the modification due to high-cost materials and cumbersome processes being required. Herein, we report TENG with a microstructured Al electrode (TENG_ME) as a new approach to modifying bulk properties of the dielectric layer. The microstructured Al electrode is utilized as a component of TENG to increase the interfacial area between the dielectric layer and electrode. Compared to the TENG with a flat Al electrode (TENG_F), the capacitance of TENG_ME is about 1.15 times higher than that of TENG_F, and the corresponding energy outputs of a TENG_ME are 117 µA and 71 V, each of which is over 1.2 times higher than that of the TENG_F. The robustness of TENG_ME is also confirmed in the measurement of energy outputs changing after sandpaper abrasion tests, repetitive contact, and separation (more than 105 cycles). The results imply that the robustness and long-lasting performance of the TENG_ME could be enough to apply in reliable auxiliary power sources for electronic devices.

10.
Micromachines (Basel) ; 9(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445759

RESUMO

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid⁻solid and solid⁻liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA