Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25752-25761, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199715

RESUMO

Organic semiconductors employed in single crystalline form have several advantages over polycrystalline films, such as higher charge carrier mobility and better environmental stability. Herein, we report the fabrication and characterization of a solution-processed microsized single-crystalline organic wire of n-type N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C5). The crystal was applied as an active layer in polymer-gated organic field-effect transistors (OFETs) and organic complementary inverter circuits. The single crystaiiline nature of PTCDI-C5 wires were characterized using two-dimensional grazing incidence wide-angle X-ray diffraction (2D-GIXD) and polarized optical microscopy. OFETs with the PTCDI-C5 crystals exhibited high n-type performance and air stability under ambient conditions. To investigate the electrical properties of the single-crystalline PTCDI-C5 wire more precisely, OFETs with only one PTCDI-C5 microwire in the channel were fabricated, and clear n-type characteristics with satisfactory saturation behavior were observed. The device with only one crystal wire exhibited characteristics with significantly lower variation compared to the multicrystal devices, which shows that the density of crystal wires is a critical factor in precisely investigating device performance. The devices exhibited a reversible threshold voltage shift under vacuum and oxygen conditions, without changing the charge carrier mobility. Light-sensitive characteristics were also observed. Additionally, this solution-processed, highly crystalline organic semiconductor can be used in high-performance organic electronic circuits as well as in gas or light sensors.

2.
Chem Commun (Camb) ; 58(9): 1298-1301, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34979536

RESUMO

Here, we propose fully soft OECTs with all soft components, including a PEDOT:PSS-based soft channel, which show substantial mechanical/electrical properties. In addition, the further demonstrated skin-mountable amplifier implies the strong potential of this work to be an innovative development in wearable electronics.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Polietilenoglicóis/química , Polímeros/química , Poliestirenos/química , Sulfonas/química , Transistores Eletrônicos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fenômenos Mecânicos , Dispositivos Eletrônicos Vestíveis
3.
Sci Adv ; 6(38)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32938663

RESUMO

A rubber-like stretchable semiconductor with high carrier mobility is the most important yet challenging material for constructing rubbery electronics and circuits with mechanical softness and stretchability at both microscopic (material) and macroscopic (structural) levels for many emerging applications. However, the development of such a rubbery semiconductor is still nascent. Here, we report the scalable manufacturing of high-performance stretchable semiconducting nanofilms and the development of fully rubbery transistors, integrated electronics, and functional devices. The rubbery semiconductor is assembled into a freestanding binary-phased composite nanofilm based on the air/water interfacial assembly method. Fully rubbery transistors and integrated electronics, including logic gates and an active matrix, were developed, and their electrical performances were retained even when stretched by 50%. An elastic smart skin for multiplexed spatiotemporal mapping of physical pressing and a medical robotic hand equipped with rubbery multifunctional electronic skin was developed to show the applications of fully rubbery-integrated functional devices.

4.
Nat Commun ; 11(1): 3823, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732934

RESUMO

An accurate extraction of physiological and physical signals from human skin is crucial for health monitoring, disease prevention, and treatment. Recent advances in wearable bioelectronics directly embedded to the epidermal surface are a promising solution for future epidermal sensing. However, the existing wearable bioelectronics are susceptible to motion artifacts as they lack proper adhesion and conformal interfacing with the skin during motion. Here, we present ultra-conformal, customizable, and deformable drawn-on-skin electronics, which is robust to motion due to strong adhesion and ultra-conformality of the electronic inks drawn directly on skin. Electronic inks, including conductors, semiconductors, and dielectrics, are drawn on-demand in a freeform manner to develop devices, such as transistors, strain sensors, temperature sensors, heaters, skin hydration sensors, and electrophysiological sensors. Electrophysiological signal monitoring during motion shows drawn-on-skin electronics' immunity to motion artifacts. Additionally, electrical stimulation based on drawn-on-skin electronics demonstrates accelerated healing of skin wounds.


Assuntos
Monitorização Fisiológica/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Pele/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Artefatos , Estimulação Elétrica , Epiderme/fisiologia , Humanos , Movimento (Física) , Semicondutores , Auxiliares Sensoriais , Pele/lesões , Cicatrização
5.
Adv Mater ; 32(15): e1902417, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31206819

RESUMO

Stretchable electronics outperform existing rigid and bulky electronics and benefit a wide range of species, including humans, machines, and robots, whose activities are associated with large mechanical deformation and strain. Due to the nonstretchable nature of most electronic materials, in particular semiconductors, stretchable electronics are mostly realized through the strategies of architectural engineering to accommodate mechanical stretching rather than imposing strain into the materials directly. On the other hand, recent development of stretchable electronics by creating them entirely from stretchable elastomeric electronic materials, i.e., rubbery electronics, suggests a feasible a venue. Rubbery electronics have gained increasing interest due to the unique advantages that they and their associated manufacturing technologies have offered. This work reviews the recent progress in developing rubbery electronics, including the crucial stretchable elastomeric materials of rubbery conductors, rubbery semiconductors, and rubbery dielectrics. Thereafter, various rubbery electronics such as rubbery transistors, integrated electronics, rubbery optoelectronic devices, and rubbery sensors are discussed.

6.
Sci Adv ; 5(10): eaax4961, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31646177

RESUMO

Artificial synaptic devices that can be stretched similar to those appearing in soft-bodied animals, such as earthworms, could be seamlessly integrated onto soft machines toward enabled neurological functions. Here, we report a stretchable synaptic transistor fully based on elastomeric electronic materials, which exhibits a full set of synaptic characteristics. These characteristics retained even the rubbery synapse that is stretched by 50%. By implementing stretchable synaptic transistor with mechanoreceptor in an array format, we developed a deformable sensory skin, where the mechanoreceptors interface the external stimulations and generate presynaptic pulses and then the synaptic transistors render postsynaptic potentials. Furthermore, we demonstrated a soft adaptive neurorobot that is able to perform adaptive locomotion based on robotic memory in a programmable manner upon physically tapping the skin. Our rubbery synaptic transistor and neurologically integrated devices pave the way toward enabled neurological functions in soft machines and other applications.

7.
Sci Adv ; 5(8): eaav9653, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31414044

RESUMO

Wearable human-machine interfaces (HMIs) are an important class of devices that enable human and machine interaction and teaming. Recent advances in electronics, materials, and mechanical designs have offered avenues toward wearable HMI devices. However, existing wearable HMI devices are uncomfortable to use and restrict the human body's motion, show slow response times, or are challenging to realize with multiple functions. Here, we report sol-gel-on-polymer-processed indium zinc oxide semiconductor nanomembrane-based ultrathin stretchable electronics with advantages of multifunctionality, simple manufacturing, imperceptible wearing, and robust interfacing. Multifunctional wearable HMI devices range from resistive random-access memory for data storage to field-effect transistors for interfacing and switching circuits, to various sensors for health and body motion sensing, and to microheaters for temperature delivery. The HMI devices can be not only seamlessly worn by humans but also implemented as prosthetic skin for robotics, which offer intelligent feedback, resulting in a closed-loop HMI system.


Assuntos
Nanoestruturas/química , Semicondutores , Dispositivos Eletrônicos Vestíveis , Géis , Índio , Polímeros , Óxido de Zinco
8.
Sci Adv ; 5(2): eaav5749, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30746492

RESUMO

An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications.

9.
APL Mater ; 7(3): 031301, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551188

RESUMO

Cardiovascular diseases are among the leading causes of death worldwide. Conventional technologies for diagnosing and treating lack the compliance and comfort necessary for those living with life-threatening conditions. Soft electronics presents a promising outlet for conformal, flexible, and stretchable devices that can overcome the mechanical mismatch that is often associated with conventional technologies. Here, we review the various methods in which electronics have been made flexible and stretchable, to better interface with the human body, both externally with the skin and internally with the outer surface of the heart. Then, we review soft, wearable, noninvasive heart monitors designed to be attached to the chest or other parts of the body for mechano-acoustic and electrophysiological sensing. A common method of treatment for various abnormal heart rhythms involves catheter ablation procedures and we review the current soft bioelectronics that can be placed on the balloon or head of the catheter. Cardiac mapping is integral to determine the state of the heart; we discuss the various parameters for sensing aside from electrophysiological sensing, such as temperature, pH, strain, and tactile sensing. Finally, we review the soft devices that harvest energy from the natural and spontaneous beating of the heart by converting its mechanical motion into electrical energy to power implants.

10.
Adv Mater ; 30(13): e1706695, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29399894

RESUMO

Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

11.
Sci Adv ; 3(9): e1701114, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913428

RESUMO

A general strategy to impart mechanical stretchability to stretchable electronics involves engineering materials into special architectures to accommodate or eliminate the mechanical strain in nonstretchable electronic materials while stretched. We introduce an all solution-processed type of electronics and sensors that are rubbery and intrinsically stretchable as an outcome from all the elastomeric materials in percolated composite formats with P3HT-NFs [poly(3-hexylthiophene-2,5-diyl) nanofibrils] and AuNP-AgNW (Au nanoparticles with conformally coated silver nanowires) in PDMS (polydimethylsiloxane). The fabricated thin-film transistors retain their electrical performances by more than 55% upon 50% stretching and exhibit one of the highest P3HT-based field-effect mobilities of 1.4 cm2/V∙s, owing to crystallinity improvement. Rubbery sensors, which include strain, pressure, and temperature sensors, show reliable sensing capabilities and are exploited as smart skins that enable gesture translation for sign language alphabet and haptic sensing for robotics to illustrate one of the applications of the sensors.

12.
Sci Adv ; 3(9): e1701222, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28879237

RESUMO

Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy.

13.
Sci Rep ; 7(1): 947, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424469

RESUMO

Electronics, which functions for a designed time period and then degrades or destructs, holds promise in medical implants, reconfigurable electronic devices and/or temporary functional systems. Here we report a thermally triggered mechanically destructive device, which is constructed with an ultra-thin electronic components supported by an electrospun poly(ε-caprolactone) nanofibrous polymer substrate. Upon heated over the melting temperature of the polymer, the pores of the nanofibers collapse due to the nanofibers' microscopic polymer chain relaxing and packing. As a result, the polymer substrate exhibits approximately 97.5% area reduction. Ultra-thin electronic components can therefore be destructed concurrently. Furthermore, by integrating a thin resistive heater as the thermal trigger of Joule heating, the device is able to on-demand destruct. The experiment and analytical results illustrate the essential aspects and theoretical understanding for the thermally triggered mechanical destructive devices. The strategy suggests a viable route for designing destructive electronics.

14.
Sci Rep ; 5: 16133, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26553110

RESUMO

Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing (TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

15.
J Nanosci Nanotechnol ; 14(10): 7938-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942898

RESUMO

We synthesized novel organic photosensitizers based on fluorine-substituted phenothiazine with thiophene bridge units in the chromophore for application in dye-sensitized solar cells (DSSCs). Furthermore, organic dyes with different acceptors exhibited higher molar extinction coefficients, and better light absorption at longer wavelengths. The photovoltaic properties of organic dyes composed of different acceptors in their chromophores were measured to identify their effects on the DSSC performance. The organic dye, PFSCN2 containing multi-cyanoacrylic acid as the electron acceptor, showed a power conversion efficiency of 4.67% under AM 1.5 illumination (100 mW/cm2). The retarded recombination kinetics from TiO2 electrode to electrolyte enhanced the electron life time of the organic dye, PFSCN2 in the photoanode of the DSSC. This was confirmed with impedance analysis.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Fenotiazinas/química , Energia Solar , Absorção de Radiação , Eletroquímica , Luz , Fenômenos Ópticos
16.
J Nanosci Nanotechnol ; 13(10): 7123-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245207

RESUMO

Dye-sensitized solar cells (DSSCs) were fabricated using an additional porous nanocrystalline titanium oxide reflecting layer in order to improve light harvesting properties. Because of the high reflectance and scattering characters of the nanocrystalline titanium oxide, photocurrent conversion efficiency and short circuit current density of DSSCs were improved. This study reports the relationship between the spatial configuration of the additional reflecting layer and the performance enhancement of DSSCs in order to investigate the optimal condition and the origin of the improved performance because spatial configuration can effect on properties positively or negatively. As the result, we can determine the best spatial configuration of reflecting layer, which have shown photo conversion efficiency enhancement (17.32%).

17.
Nanoscale Res Lett ; 7: 46, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22222011

RESUMO

In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices.

18.
ACS Appl Mater Interfaces ; 3(5): 1451-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21401212

RESUMO

A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA