Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancer Lett ; 591: 216904, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642608

RESUMO

KRAS plays a crucial role in regulating cell survival and proliferation and is one of the most commonly mutated oncogenes in human cancers. The novel KRASG12D inhibitor, MRTX1133, demonstrates promising antitumor efficacy in vitro and in vivo. However, the development of acquired resistance in treated patients presents a considerable challenge to sustained therapeutic effectiveness. In response to this challenge, we conducted site-specific mutagenesis screening to identify potential secondary mutations that could induce resistance to MRTX1133. We screened a range of KRASG12D variants harboring potential secondary mutations, and 44 representative variants were selected for in-depth validation of the pooled screening outcomes. We identified eight variants (G12D with V9E, V9W, V9Q, G13P, T58Y, R68G, Y96W, and Q99L) that exhibited substantial resistance, with V9W showing notable resistance, and downstream signaling analyses and structural modeling were conducted. We observed that secondary mutations in KRASG12D can lead to acquired resistance to MRTX1133 and BI-2865, a novel pan-KRAS inhibitor, in human cancer cell lines. This evidence is critical for devising new strategies to counteract resistance mechanisms and, ultimately, enhance treatment outcomes in patients with KRASG12D-mutant cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos
3.
Adv Sci (Weinh) ; 11(4): e2306401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032124

RESUMO

Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.


Assuntos
Imunoconjugados , Proteínas/metabolismo , Anticorpos
4.
Cell Chem Biol ; 30(11): 1414-1420.e5, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37567174

RESUMO

Chemically induced protein degradation is a powerful strategy for perturbing cellular biochemistry. The predominant mechanism of action for protein degrader drugs involves an induced proximity between the cellular ubiquitin-conjugation machinery and a target. Unlike traditional small molecule enzyme inhibition, targeted protein degradation can clear an undesired protein from cells. We demonstrate here the use of peptide ligands for Kelch-like homology domain-containing protein 2 (KLHDC2), a substrate adapter protein and member of the cullin-2 (CUL2) ubiquitin ligase complex, for targeted protein degradation. Peptide-based bivalent compounds that can induce proximity between KLHDC2 and target proteins cause degradation of the targeted factors. The cellular activity of these compounds depends on KLHDC2 binding. This work demonstrates the utility of KLHDC2 for targeted protein degradation and exemplifies a strategy for the rational design of peptide-based ligands useful for this purpose.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Proteólise , Proteínas Adaptadoras de Transdução de Sinal
5.
Eur J Med Chem ; 259: 115592, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478559

RESUMO

SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 µM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 µM) and bacteria (MICs = 4-32 µg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 µg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Sideróforos/farmacologia , Staphylococcus aureus
6.
Eur J Med Chem ; 259: 115635, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37494773

RESUMO

Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Apoptose , Necroptose/efeitos dos fármacos , Necrose , Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Front Immunol ; 14: 1307739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371945

RESUMO

Background: Since NEK7 is critical for NLRP3 inflammasome activation, NEK7 inhibitors could be employed as therapeutic agents against gout, a representative disease caused by NLRP3 inflammasome. Methods: We designed NEK7 inhibitors based on biochemical kinome profiling of 2,7-substituted thieno[3,2-d]pyrimidine derivatives (SLC3031~3035 and SLC3037). Inflammasome activation was assessed by ELISA of IL-1b and immunoblotting of IL-1b maturation after treatment of bone marrow-derived macrophages with LPS+monosodium urate (MSU). NLPR3 binding to NEK7 and oligomerization were examined using immunoprecipitation and Blue Native gel electrophoresis, respectively. In vivo effect was investigated by studying gross and histopathological changes of food pad tissue of MSU-injected mice, together with assays of maturation of IL-1b and ASC speck in the tissue. Results: SLC3037 inhibited inflammasome by MSU and other inflammasome activators through blockade of NLRP3 binding to NEK7 or oligomerization, and subsequent ASC oligomerization/phosphorylation. SLC3037 significantly reduced foot pad thickness and inflammation by MSU, which was superior to the effects of colchicine. SLC3037 significantly reduced content or maturation of IL-1b and ASC speck in the food pad. The number and height of intestinal villi were decreased by colchicine but not by SLC3037. Conclusion: SLC3037, a NLRP3 inhibitor blocking NEK7 binding to NLRP3, could be a novel agent against diseases associated with NLRP3 inflammasome activation such as gout, cardiovascular diseases, metabolic syndrome or neurodegenerative diseases.


Assuntos
Gota , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/efeitos adversos , Inflamassomos/metabolismo , Gota/metabolismo , Colchicina/uso terapêutico
8.
Cell Death Dis ; 13(5): 469, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585049

RESUMO

The RAS-BRAF signaling is a major pathway of cell proliferation and their mutations are frequently found in human cancers. Adenylate kinase 2 (AK2), which modulates balance of adenine nucleotide pool, has been implicated in cell death and cell proliferation independently of its enzyme activity. Recently, the role of AK2 in tumorigenesis was in part elucidated in some cancer types including lung adenocarcinoma and breast cancer, but the underlying mechanism is not clear. Here, we show that AK2 is a BRAF-suppressor. In in vitro assays and cell model, AK2 interacted with BRAF and inhibited BRAF activity and downstream ERK phosphorylation. Energy-deprived conditions in cell model and the addition of AMP to cell lysates strengthened the AK2-BRAF interaction, suggesting that AK2 is involved in the regulation of BRAF activity in response to cell metabolic state. AMP facilitated the AK2-BRAF complex formation through binding to AK2. In a panel of HCC cell lines, AK2 expression was inversely correlated with ERK/MAPK activation, and AK2-knockdown or -knockout increased BRAF activity and promoted cell proliferation. Tumors from HCC patients showed low-AK2 protein expression and increased ERK activation compared to non-tumor tissues and the downregulation of AK2 was also verified by two microarray datasets (TCGA-LIHC and GSE14520). Moreover, AK2/BRAF interaction was abrogated by RAS activation in in vitro assay and cell model and in a mouse model of HRASG12V-driven HCC, and AK2 ablation promoted tumor growth and BRAF activity. AK2 also bound to BRAF inhibitor-insensitive BRAF mutants and attenuated their activities. These findings indicate that AK2 monitoring cellular AMP levels is indeed a negative regulator of BRAF, linking the metabolic status to tumor growth.


Assuntos
Monofosfato de Adenosina , Adenilato Quinase , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas B-raf , Monofosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
9.
J Enzyme Inhib Med Chem ; 37(1): 1257-1277, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35484863

RESUMO

Identification of highly selective type II kinase inhibitors is described. Two different chiral peptidomimetic scaffolds were introduced on the tail region of non-selective type II kinase inhibitor GNF-7 to enhance the selectivity. Kinome-wide selectivity profiling analysis showed that type II kinase inhibitor 7a potently inhibited Lck kinase with great selectivity (IC50 of 23.0 nM). It was found that 7a and its derivatives possessed high selectivity for Lck over even structurally conserved all Src family kinases. We also observed that 7a inhibited Lck activation in Jurkat T cells. Moreover, 7a was found to alleviate clinical symptoms in DSS-induced colitis mice. This study provides a novel insight into the design of selective type II kinase inhibitors by adopting chiral peptidomimetic moieties on the tail region.


Assuntos
Peptidomiméticos , Animais , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Camundongos , Peptidomiméticos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src
10.
J Med Chem ; 65(8): 6017-6038, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436119

RESUMO

Although FGFR inhibitors hold promise in treating various cancers, resistance to the FGFR inhibitors caused by acquired secondary mutations has emerged. To discover novel FGFR inhibitors capable of inhibiting FGFR mutations, including gatekeeper mutations, we designed and synthesized several new pyridinyltriazine derivatives. A structure-activity relationship (SAR) study led to the identification of 17a as a highly potent panFGFR inhibitor against wild-type and mutant FGFRs. Notably, 17a is superior to infigratinib in terms of kinase-inhibitory and cellular activities, especially against V555M-FGFR3. Molecular dynamics simulations provide a clear understanding of why pyridinyltraizine derivative 17a possesses activity against V555M-FGFR3. Moreover, 17a significantly suppresses proliferation of cancer cells harboring FGFR mutations via FGFR signaling blockade, cell cycle arrest, and apoptosis. Furthermore, 17a and 17b exhibited remarkable efficacies in TEL-V555M-FGFR3 Ba/F3 xenograft mouse model and 17a is more efficacious than infigratinib. This study provides new insight into the design of novel FGFR inhibitors that are active against FGFR mutants.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Resistência a Medicamentos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
11.
J Med Chem ; 65(3): 1915-1932, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35029981

RESUMO

The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of 16e on Plk1-PBD is >30-fold higher than those of PMQSpTPL. Both 16a and 16e possess excellent selectivity for Plk1-PBD over Plk2/3-PBD. Analysis of the cocrystal structure of Plk1-PBD in complex with 16a reveals that the 3-(trifluoromethyl)benzoyl group in 16a interacts with Arg516 through a π-stacking interaction. This π-stacking interaction, which has not been reported previously, provides insight into the design of novel and potent Plk1-PBD inhibitors. Furthermore, 16h, a PEGlyated macrocyclic phosphopeptide derivative, induces Plk1 delocalization and mitotic failure in HeLa cells. Also, the number of phospho-H3-positive cells in a zebrafish embryo increases in proportion to the amount of 16a. Collectively, the novel macrocyclic peptidomimetics should serve as valuable templates for the design of potent and novel Plk1-PBD inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra , Quinase 1 Polo-Like
12.
Mol Cancer Ther ; 21(2): 322-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789563

RESUMO

MET-targeted therapies are clinically effective in MET-amplified and MET exon 14 deletion mutant (METex14) non-small cell lung cancers (NSCLCs), but their efficacy is limited by the development of drug resistance. Structurally distinct MET tyrosine kinase inhibitors (TKIs) (type I/II) have been developed or are under clinical evaluation, which may overcome MET-mediated drug resistance mechanisms. In this study, we assess secondary MET mutations likely to emerge in response to treatment with single-agent or combinations of type I/type II MET TKIs using TPR-MET transformed Ba/F3 cell mutagenesis assays. We found that these inhibitors gave rise to distinct secondary MET mutant profiles. However, a combination of type I/II TKI inhibitors (capmatinib and merestinib) yielded no resistant clones in vitro The combination of capmatinib/merestinib was evaluated in vivo and led to a significant reduction in tumor outgrowth compared with either MET inhibitor alone. Our findings demonstrate in vitro and in vivo that a simultaneous treatment with a type I and type II MET TKI may be a clinically viable approach to delay and/or diminish the emergence of on target MET-mediated drug-resistance mutations.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia
13.
Neoplasia ; 24(1): 34-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864570

RESUMO

Hepatocellular carcinoma (HCC) is disease with a high mortality rate and limited treatment options. Alterations of fibroblast growth factor receptor 4 (FGFR4) has been regarded as an oncogenic driver for HCC and a promising target for HCC therapeutics. Herein, we report that GNF-7, a multi-targeted kinase inhibitor, and its derivatives including SIJ1263 (IC50 < 1 nM against FGFR4) are highly potent FGFR4 inhibitors and are capable of strongly suppressing proliferation of HCC cells and Ba/F3 cells transformed with wtFGFR4 or mtFGFR4. Compared with known FGFR4 inhibitors, both GNF-7 and SIJ1263 possess much higher (up to 100-fold) anti-proliferative activities via FGFR signaling blockade and apoptosis on HCC cells. Especially, SIJ1263 is 80-fold more potent (GI50 = 24 nM) on TEL-FGFR4 V550E Ba/F3 cells than BLU9931, which suggests that SIJ1263 would be effective for overriding drug resistance. In addition, both substances strongly suppress migration/invasion and colony formation of HCC cells. It is worth noting that SIJ1263 is superior to GNF-7 with regards to the fact that activities of SIJ1263 are higher than those of GNF-7 in all assays performed in this study. Collectively, this study provides insight into designing highly potent FGFR4 inhibitors capable of potentially overcoming drug-resistance for the treatment of HCC patients.


Assuntos
Antineoplásicos/farmacologia , Pirimidinonas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pirimidinonas/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Relação Estrutura-Atividade
14.
Cancers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36612139

RESUMO

c-KIT is a promising therapeutic target against gastrointestinal stromal tumor (GIST). In order to identify novel c-KIT inhibitors capable of overcoming imatinib resistance, we synthesized 31 novel thiazolo[5,4-b]pyridine derivatives and performed SAR studies. We observed that, among these substances, 6r is capable of inhibiting significantly c-KIT and suppressing substantially proliferation of GIST-T1 cancer cells. It is of note that 6r is potent against a c-KIT V560G/D816V double mutant resistant to imatinib. Compared with sunitinib, 6r possesses higher differential cytotoxicity on c-KIT D816V Ba/F3 cells relative to parental Ba/F3 cells. In addition, kinase panel profiling reveals that 6r has reasonable kinase selectivity. It was found that 6r remarkably attenuates proliferation of cancer cells via blockade of c-KIT downstream signaling, and induction of apoptosis and cell cycle arrest. Furthermore, 6r notably suppresses migration and invasion, as well as anchorage-independent growth of GIST-T1 cells. This study provides useful SAR information for the design of novel c-KIT inhibitors overcoming imatinib-resistance.

15.
Front Oncol ; 11: 768022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956887

RESUMO

RAS mutants are involved in approximately 30% of all human cancers and have been regarded as undruggable targets owing to relatively smooth protein surface and obscure binding pockets. In our previous study, we have demonstrated that GNF-7, a multi-targeted kinase inhibitor, possesses potent anti-proliferative activity against Ba/F3 cells transformed with NRAS-G12D. Based on our further analysis using Ba/F3 cells transformed with mtRAS, we discovered a series of pyrimido[4,5-d]pyrimidin-2-one analogues as mtRAS-signaling pathway blockers. In addition, our efforts expanded the assessment to cancer cells with mtRAS, which revealed that these substances are also capable of strongly suppressing the proliferation of various cancer cells harboring KRAS-G12D (AsPC-1), KRAS-G12V (SW480, DU-145), KRAS-G12C (H358), KRAS-G13D (MDA-MB-231), KRAS-Q61L (HT-29), and NRAS-Q61L (OCI-AML3). We herein report novel and potent mtRAS-signaling pathway blockers, SIJ1795 and SIJ1772, possessing 2 to 10-fold increased anti-proliferative activities compared to those of GNF-7 on cancer cells harboring mtRAS as well as on Ba/F3 cells transformed with mtRAS. Both SIJ1795 and SIJ1772 attenuate phosphorylation of RAS downstream molecules (AKT and MEK) and induce apoptosis and G0/G1 cell cycle arrest on cancer cells with mtRAS. Moreover, both substances substantially suppress the migration, invasion, and colony formation of cancer cells harboring mtRAS. Taken together, this study led us to identification of SIJ1795 and SIJ1772 capable of strongly inhibiting mtRAS-signaling pathway on cancer cells harboring mtRAS.

16.
Front Oncol ; 11: 757598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790577

RESUMO

Inhibitors of tropomyosin-related kinases (TRKs) display remarkable outcomes in the regression of cancers harboring the Neurotrophin Receptors Tyrosine Kinase (NTRK) fusion gene. As a result, TRKs have become attractive targets in anti-cancer drug discovery programs. Here, we demonstrate that AZD4547, a highly potent and selective inhibitor of fibroblast growth factor receptor (FGFR), displays anti-tumor activity against KM12(Luc) harboring the TPM3-NTRK1 fusion gene associated with its direct inhibition of TRKs. The results of profiling, using a 64-member in-house cancer cell panel, show that AZD4547 displays anti-proliferation activity against KM12(Luc) with a GI50 of 100 nM. In vitro biochemical assays reveal that AZD4547 has IC50 values of 18.7, 22.6 and 2.9 nM against TRKA, B and C, respectively. In a cellular context, AZD4547 blocks auto-phosphorylation of TRKs and phosphorylation of its downstream molecules including PLC-gamma and AKT in a dose dependent manner. Also, AZD4547 at 0.1 µM concentration downregulates expression of MAPK target genes (DUSP6, CCND1 and ETV1) as well as the E2F pathway. Furthermore, AZD4547 induces G0/G1 arrest and apoptosis, and suppresses anchorage independent growth of KM12(Luc). Oral administration of 40 mpk AZD4547 dramatically delays tumor growth in a KM12(Luc) implemented xenograft model, without promoting body weight changes. The capability of AZD4547 to inhibit TRKA, TRKB and clinically relevant mutants (TRKA G595R, G667S, G667C and G667A) was also evaluated using Ba/F3 cells harboring the ETV6-NTRKs fusion gene. The combined observations demonstrate the potential application of AZD4547 for treatment of NTRK fusion driven cancers.

17.
J Med Chem ; 64(16): 11934-11957, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34324343

RESUMO

Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Metástase Neoplásica/prevenção & controle , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Tiofenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
18.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917428

RESUMO

Melanoma accounts for the majority of skin cancer deaths. About 50% of all melanomas are associated with BRAF mutations. BRAF mutations are classified into three classes with regard to dependency on RAF dimerization and RAS signaling. The most frequently occurring class I BRAF V600 mutations are sensitive to vemurafenib whereas class II and class III mutants, non-V600 BRAF mutants are resistant to vemurafenib. Herein we report six pyrimido[4,5-d]pyrimidin-2-one derivatives possessing highly potent anti-proliferative activities on melanoma cells harboring BRAF class I/II/III mutants. Novel and most potent derivative, SIJ1777, possesses not only two-digit nanomolar potency but also 2 to 14-fold enhanced anti-proliferative activities compared with reference compound, GNF-7 against melanoma cells (SK-MEL-2, SK-MEL-28, A375, WM3670, WM3629). Moreover, SIJ1777 substantially inhibits the activation of MEK, ERK, and AKT and remarkably induces apoptosis and significantly blocks migration, invasion, and anchorage-independent growth of melanoma cells harboring BRAF class I/II/II mutations while both vemurafenib and PLX8394 have little to no effects on melanoma cells expressing BRAF class II/III mutations. Taken together, our six GNF-7 derivatives exhibit highly potent activities against melanoma cells harboring class I/II/III BRAF mutations compared with vemurafenib as well as PLX8394.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma , Mutação , Proteínas Proto-Oncogênicas B-raf , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
19.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494352

RESUMO

Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Lactonas/síntese química , Lactonas/farmacologia , Antineoplásicos Fitogênicos/química , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Humanos , Lactonas/química , Estrutura Molecular , Relação Estrutura-Atividade
20.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33275901

RESUMO

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Assuntos
Proteínas Quinases/metabolismo , Proteólise , Proteoma/metabolismo , Adulto , Linhagem Celular , Bases de Dados de Proteínas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA