Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(9): e08075, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34632142

RESUMO

High fat diet (HFD) is one of the risk factors of obesity and diabetes. Recommended diet regimen for diabetes is difficult to abide by especially for HFD as it adds flavour to the taste buds. In this study, palm oil-enriched HFD and normal diet were fed to nicotinamide-induced type 2 diabetes rats, respectively for six weeks. Additionally, metformin, a common drug used to treat diabetes was given to rats under treatment groups. We evaluated the change of urinary metabolites of diabetes rats fed with palm oil-enriched HFD, and also after metformin treatment. Rats were divided into six-groups with different feeding diets, disease condition and with or without metformin treatment. Rats' urine were collected at the end of six weeks feeding program and subjected to 1H-NMR and multivariate data analysis to evaluate their metabolite profiles. At the early phase of diabetes, metabolites changes in diabetic rats were associated with the disease itself. Our data showed that continuous consumption of HFD altered various metabolic pathways of diabetic rats and caused detrimental effects to the rats. On the other hand, metformin treatment combined with normal diet lessened the physiological impacts caused by diabetes condition.

2.
Biotechnol Appl Biochem ; 68(5): 1014-1026, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32931602

RESUMO

High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/urina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/urina , Análise Discriminante , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/urina , Análise dos Mínimos Quadrados , Masculino , Metabolômica , Metformina/uso terapêutico , Metformina/urina , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA